
Windows* Sockets 2�Protocol-Specific�Annex

Revision 2.0.3
May 10, 1996

�

Subject to Change Without Notice

�

Disclaimer and License
�THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE THIS SPECIFICATION, BUT ONLY IN ITS ENTIRETY AND WITHOUT MODIFICATION, FOR INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY OTHER INTELLECTUAL PROPERTY RIGHTS IS GRANTED HEREIN.

INTEL AND OTHER COMPANIES WHO HAVE CONTRIBUTED MATERIAL TO THIS DOCUMENT DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. SAID COMPANIES DO NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

* Third-party trademarks are the property of their respective owners.

�Table of Contents

1. Introduction	1
1.1. Intended Audience	1
1.2. Document Organization	1
1.3. Status of This Specification	1
1.4. Document Version Conventions	2
1.5. New And/Or Different in Version 2.0.3	2
2.TCP/IP	3
2.1. TCP/IP Introduction	3
2.2. TCP/IP Overview	3
2.3. TCP/IP Data Structures	3
2.4. TCP/IP Controls	4
2.4.1. Ioctls	4
2.4.2. Socket Options	4
2.5. TCP/IP Function Details	6
2.5.1. Multicast	6
2.5.2. Raw Sockets	6
2.5.3. IPv6 Support	7
2.5.4. Text representation of IPv6 addresses	7
2.6. TCP/IP Header File	8
3. IPX/SPX	11
3.1. IPX/SPX Introduction	11
3.2. IPX/SPX Overview	11
3.2.1. The AF_IPX Address Family	11
3.2.2. The IPX Family of Protocol Identifiers	12
3.2.3. Broadcast to Local Network	12
3.2.4. All routes broadcast.	12
3.2.5. Directed broadcast.	13
3.2.6. About Media Packet Size	13
3.2.7. How Packet Size Affects Protocols	13
3.3. IPX/SPX Data Structures	14
3.4. IPX/SPX Controls	14
3.4.1. Socket Options	14
3.4.1.1. SPX_RAWSPX	15
3.5. IPX/SPX Function Specifics	16
3.6. IPX/SPX Header File	16
3.6.1. WSIPX.H	16
4. DECnet	19
4.1. DECnet Introduction	19
4.2. DECnet Overview	19
4.2.1. The DNPROTO_NSP Protocol Family	19
4.2.2. The AF_DECnet Address families	19
4.2.2.1. DECnet Phase IV node addresses	19
4.2.2.2. DECnet extended addressing	19
4.2.2.3. DECnet objects	20
4.2.3. The SOCK_SEQPACKET Socket Type	20
4.3. DECnet Data Structures	20
4.3.1. Manifest Constants (WINSOCK2.H)	20
4.3.2. Manifest Constants (WS2DNET.H)	20
4.3.3. Data Structures (WS2DNET.H)	20
4.3.3.1. DECnet node address	20
4.3.3.2. DECnet socket	21
4.3.3.3. DECnet node entity	21
4.3.3.4. DECnet optional data	21
4.3.3.5. DECnet outgoing access control data	21
4.3.3.6. DECnet incoming access control	21
4.3.3.7. DECnet call data	21
4.3.3.8. DECnet logical link	22
4.4. DECnet Function Details	22
4.4.1. accept() / WSAAccept() / WSPAccept()	22
4.4.1.1. Immediate accept() with no optional or access data	22
4.4.1.2. Deferred accept() with optional and access data	22
4.4.2. bind() / WSPBind()	23
4.4.3. connect() / WSAConnect() / WSPConnect()	23
4.4.3.1. Connect() with no optional or access data	23
4.4.3.2. Optional and access data on connect()	24
4.4.4. getpeername() / WSPGetPeerName()	24
4.4.5. getsockname() / WSPGetSockName()	25
4.4.6. getsockopt() / WSPGetSockOpt()	25
4.4.7. socket() / WSASocket() / WSPSocket()	25
4.4.8. Out-of-band data	26
4.5. DECnet-specific Extended Functions Identifiers	26
4.5.1. dnet_addr()	26
4.5.2. dnet_eof()	27
4.5.3. dnet_getacc()	27
4.5.4. dnet_getalias()	27
4.5.5. dnet_htoa()	28
4.5.6. dnet_ntoa()	28
4.5.7. getnodeadd()	28
4.5.8. getnodebyaddr()	28
4.5.9. getnodebyname()	29
4.5.10. getnodename()	29
4.6. DECnet Header File	29
5. OSI	33
5.1. OSI Introduction	33
5.2. OSI Overview	33
5.2.1. Expedited Data	33
5.2.2. Qualified Data	34
5.2.3. Reset	34
5.2.4. Quality Of Service	34
5.2.5. Option Profiles	34
5.2.6. Address Format	34
5.3. OSI Data Structures	34
5.4. OSI Controls	35
5.4.1. Ioctls	35
5.4.2. Socket Options	35
5.5. OSI Function Specifics	36
5.5.1. Quality Of Service	36
5.6. OSI Header File	36
6. ATM-Specific Extensions	39
6.1. ATM Introduction	39
6.2. ATM Overview	39
6.3. ATM Data Structures	39
6.3.1. The ATM_ADDRESS structure	40
6.3.2. The ATM_BLLI structure and associated manifest constants	41
6.3.3. The ATM_BHLI structure and associated manifest constants	42
6.4. ATM Controls	43
6.5. ATM Function Specifics	43
6.6. ATM-specific QOS Extension	43
6.6.1. AAL Parameters	44
6.6.2. ATM Traffic Descriptor	44
6.6.3. Broadband Bearer Capability	45
6.6.4. Broadband High Layer Information	45
6.6.5. Broadband Lower Layer Information	45
6.6.6. Called Party Number	46
6.6.7. Called Party Subaddress	46
6.6.8. Calling Party Number	46
6.6.9. Calling Party Subaddress	46
6.6.10. Quality of Service Parameter	46
6.6.11. Transit Network Selection	47
6.6.12. Cause	47
6.7. ATM Header File	48
7. SSL Security Protocol	55
7.1. SSL Introduction	55
7.2. SSL Overview	55
7.2.1.Public-Key Cryptography	55
7.2.2.The Secure Sockets Layer Protocol (SSL)	56
7.2.3.Discovering and Using SSL-Enabled Transports	56
7.2.4.Using SSL-Enabled Sockets	56
7.3. SSL Data Structures	57
7.4. SSL Controls	57
7.4.1.SO_SSL_GET_FLAGS/SO_SSL_SET_FLAGS	57
7.4.2.SO_SSL_GET_CIPHERS/SO_SSL_SET_CIPHERS	58
7.4.3.SO_SSL_GET_CLIENT/SO_SSL_SET_CLIENT	58
7.4.4.SO_SSL_GET_SERVER/SO_SSL_SET_SERVER	59
7.4.5.SO_SSL_GET_AUTH_CERT_HOOK/SO_SSL_SET_AUTH_CERT_HOOK	59
7.4.6.SO_SSL_RSA_ENCRYPT_HOOK	60
7.4.7.SO_SSL_RSA_DECRYPT_HOOK	60
7.5. SSL Function Specifics	61
7.6. SSL Header File	61
8. Information for Wireless Networking	62
9.Winsock/TAPI Integration	63
10. RSVP	64
10.1. Introduction	64
10.2. RSVP Overview	64
10.3. RSVP Reservation Model	64
10.4. RSVP Data Structures	65
10.5. RSVP Controls	65
10.5.1. Ioctls	65
10.6. Policy Object	67
10.7. RSVP Status Notifications	67
10.8. RSVP Header File	68

�Acknowledgements �Windows Sockets Version 2

Since The WinSock Group started the Version 2 specification process in May 1994, hundreds of people, companies and organizations have cooperated and contributed to its design and specification. Several meetings, many emails and telephone conversations later, it’s appropriate to acknowledge the part played by everyone and certain contributors in particular.

Many individuals too numerous to mention have given time to the project and all of them are owed a debt of thanks for the roles they played in creating the most comprehensive open transport API designed to date. The commitment, dedication and energy of the following individuals and companies should be singled out for special attention.

First, the design of WinSock 2 was based on the input of multiple “Functionality Groups” whose leaders cajoled, steered, defined and refined each of their group’s technical proposals. Consequently, we’d like to recognize the following individuals and their employers for the time and effort they have given. It’s appropriate to thank Dave Andersen for the challenge he undertook, met and surpassed in defining the generic API set and pulling together the contributions of all the various Functionality Groups.

Functionality Group�Leader(s)�Email�Company��Generic API�Dave Andersen�andersen@ibeam.jf.intel.com�Intel��Operating Framework�Keith Moore�keithmo@microsoft.com�Microsoft��Specification Clarifications�Bob Quinn�rcq@ftp.com�FTP Software���Vikas Garg�vikas@distinct.com�Distinct���Paul Brooks�brooks@turbosoft.com�Turbosoft��Name Resolution�Margaret Johnson�margretj@microsoft.com�Microsoft��Connection-Oriented Media�Charlie Tai�Charlie_Tai@ccm.jf.intel.com�Intel���Sanjay Agrawal�sanjaya@microsoft.com�Microsoft��Wireless�Dale Buchholz�drbuchholz@mot.com�Motorola��TCP/IP�Michael Khalandovsky�mlk@ftp.com�FTP Software��IPX/SPX�Tim Delaney�tdelaney@novell.com�Novell��DECnet�Cathy Bence�bence@ranger.enet.dec.com�DEC��OSI�Adrian Dawson�ald@oasis.icl.co.uk�ICL��
The following individuals moderated the WinSock 2 effort as a whole and provided the framework, technical guidance and administrative mechanisms for WinSock Version 2.

Moderator�Email�Company��Martin Hall�martinh@stardust.com�Stardust Technologies��Dave Treadwell�davidtr@microsoft.com�Microsoft��Mark Towfiq�towfiq@east.sun.com�SunSoft��
Special thanks to Microsoft and Intel for the amount of time these companies gave to the specification and especially to Dave Treadwell and Keith Moore at Microsoft and Dave Andersen and Charlie Tai at Intel for their considerable editorial effort on the WinSock 2 specifications.

This version would not, of course, have been possible without the effort of the contributors to WinSock Version 1.1 and the numerous products that implement and use it. Of special significance to the success of WinSock are the hundreds of shareware and freeware applications that have been developed and continue to emerge. The authors of these packages are some of WinSock’s unsung heroes. It’s fitting to recognize, at least, the role of and contribution made by Peter Tattam’s “Trumpet” WinSock implementation.

We’d like to thank Interop for hosting the kick-off meeting for WinSock Version 2, and Novell for kindly providing the facilities for the meeting that marked the consolidation effort which brought together the work of different groups into a coordinated API and SPI definition.

Sincerely,
Martin Hall
Stardust Technologies
�1. Introduction
The Windows Sockets 2 specification is a superset of the widely deployed Windows Sockets 1.1 interface. While maintaining full backwards compatibility it extends the WinSock interface in a number of areas including providing access to protocols other than TCP/IP. WinSock 2 allows an application to use the familiar socket interface to achieve simultaneous access to any number of installed transport protocols.
While most of the facilities of these protocols may be utilized via the standard Windows Sockets 2 interface mechanisms, each supported protocol has certain conventions, and behaviors which developers may need to be aware of. Also, protocols often support some number of special features which do not lend themselves to being genericized. The purpose of this document is to provide the details necessary for developers to effectively utilize any of the supported protocols.

1.1. Intended Audience
This document is targeted at persons who are familiar with the Windows Sockets application programming interface and who need specific knowledge about how WinSock can used to access the unique features of a supported protocol. It is assumed that developers are already familiar with the basic capabilities and features of the protocols they are considering.

Persons who are interested in making a particular transport protocol available under the WinSock 2 interface will need to be familiar with the WinSock 2 Service Provider Interface (SPI) Specification, which exists under separate cover.

1.2. Document Organization
The complete Windows Sockets 2 specification consists of three separate documents:
Windows Sockets 2 Application Programming Interface
Windows Sockets 2 Protocol-Specific Annex
Windows Sockets 2 Service Provider Interface

This document (Windows Sockets 2 Protocol-Specific Annex) is divided into nine sections, one for each protocol or media type being covered.

Section 1�Introductory material about the specification as a whole��Section 2�Details on TCP/IP protocols��Section 3�Details on IPX/SPX protocols��Section 4�Details on DECNet protocols��Section 5�Details on OSI protocols ��Section 6�Considerations for using ATM networks��Section 7�Details on the Secure Sockets Layer (SSL) protocol��Section 8�Considerations for using wireless networks��Section 9�Interoperability between Windows Sockets and Windows Telephony��Section 10�RSVP - Internet Resource Reservation Protocol��
The Windows Sockets 2 Application Programming Interface specifies the interface that applications developers use to access the generic features of Windows Sockets 2. The Windows Sockets 2 Service Provider Interface specifies the interface that transport providers must conform to in order to be accessible via Windows Sockets 2.

1.3. Status of This Specification
This document is an annex to the Windows Sockets 2 specification. The material for each chapter was supplied by a representative of the applicable functionality area from within the WinSock Group. Only minor editing has occured to unify form and style, with no changes having been made to the technical content. Each chapter identifies the individual who was responsible for compiling and organizing the information contained therein, and any comments or feedback should be directed towards these individuals.

The WinSock Group’s Generic API Extensions group has responsibility for compiling and producing this document. It will be updated from time to time as errors are corrected and clarifications made, and as additional protocols become supported under the Windows Sockets 2 interface.

Constructive comments and feedback on the overall document are actively solicited and should be directed to:
David B. Andersen
Intel Architecture Labs
andersen@alder.jf.intel.com

1.4. Document Version Conventions
WinSock 2 documents have adopted a 3-part revision identification system. Each revision of the document will be clearly labeled with a release date and a revision identifier such as X.Y.Z where:
X is the major version of the WinSock specification (currently version 2)
Y is a major revision identifier that is incremented each time changes are made that impact binary compatibility with the previous spec revision (e.g. changes in a function’s parameter list or new functions being added)
Z is a minor revision indicator that is incremented when wording changes or clarifications have been made which do not impact binary compatibility with a previous revision.

1.5. New And/Or Different in Version 2.0.3
The following chapters contain updated material with this version:
TCP/IP
ATM-SPECIFIC EXTENSIONS
RSVP
�2.TCP/IP

2.1. TCP/IP Introduction
This section covers extensions to WinSock 2 that are specific to TCP/IP protocols. It also describes aspects of base WinSock 2 functions that require special consideration or which may exhibit unique behavior when using TCP/IP.

Address comments or questions regarding this material to:
		Mike Khalandovsky
		FTP Software
		mlk@ftp.com

	Fast Facts:
Protocol Name(s)�TCP, UDP��Description�Provides two transport services over the IP networking layer: UDP for unreliable datagrams, TCP for reliable, connection-oriented byte streams.��Address Family�AF_INET��Header File�WS2TCPIP.H��
2.2. TCP/IP Overview
The TCP/IP protocol suite form the backbone of the global Internet. The original WinSock specification (version 1.1) addressed only TCP/IP protocols, and still has a few IP-specific peculularities.

Two basic types of transport services are offered: unreliable datagrams (UDP), and reliable connection-oriented byte streams (TCP). In addition, a raw socket is optionally supported. Raw sockets allow an application to communicate via protocols other than TCP and UDP such as ICMP.
2.3. TCP/IP Data Structures
The INTERFACE_INFO structure is used in conjunction with the SIO_GET_INTERFACE_LIST ioctl command. It is defined in Ws2tcpip.h file and is reproduced here.

typedef struct _INTERFACE_INFO
{
	u_long		iiFlags;			/* Type and status of the interface */
	struct sockaddr	iiAddress;		/* Interface address */
	struct sockaddr	iiBroadcastAddress; 	/* Broadcast address */
	struct sockaddr	iiNetmask;		/* Network mask */
} INTERFACE_INFO;

iiFlags - a bitmask describing the status of the interface. The following flags are possible:

	IFF_UP			- interface is up
	IFF_BROADCAST	- broadcast is supported
	IFF_LOOPBACK	- this is loopback interface
	IFF_POINTTOPOINT	- this is point-to-point link
	IFF_MULTICAST	- multicast is supported

iiAddress - address of the interface

iiBroadcastAddress - broadcast address of the interface or the address of the other side for point-to-point links

iiNetmask - netmask used by the interface

2.4. TCP/IP Controls
The following controls are available in all TCP/IP implementations.

2.4.1. Ioctls

	The SIOGIFCONF command provided by most UNIX implementations is supported in form of WSAIoctl()/WSPIoctl() with the command SIO_GET_INTERFACE_LIST. This command returns the list of configured interfaces and their parameters. Support of this command is mandatory for WinSock2 compliant TCP/IP service providers.

	The parameter lpvOutBuffer points to the buffer in which the WSAIoctl()/WSPIoctl() stores the information about interfaces. The description of the structure of this appears above. The number of interfaces (number of structures returned in lpvOutBuffer) can be determined based on the actual length of the output buffer returned in lpcbBytesReturned.

2.4.2. Socket Options

The following TCP/IP specific options are defined:
			
level=IPPROTO_IP
��Value
�Type �Meaning��IP_OPTIONS�char FAR *�List of IP options to be inserted into outgoing packets.��IP_TOS
�int �Specifies type of service to be used��IP_TTL
�int�Specify TTL to be used��IP_HDRINCL�BOOL�If true, application will provide IP header in the packets sent over SOCK_RAW interface, otherwise the header is provided by the service provider.��IP_MULTICAST_IF�struct in_addr FAR *�Select interface for outgoing multicast packets. The optval should point to the address of the interface to be used. If NULL, the default interface is used.��IP_MULTICAST_TTL
�int�TTL used for the multicast packets��IP_MULTICAST_LOOP�BOOL�If true, multicast loopback is enabled, otherwise - disabled.��IP_ADD_MEMBERSHIP
�struct ip_mreq FAR *�Specify the multicast group to join��IP_DROP_MEMBERSHIP
�struct ip_mreq FAR *�Specify the multicast group to leave��
			
level= IPPROTO_UDP
��Value
�Type �Meaning��UDP_NOCHECKSUM�BOOL�If the option is set, UDP datagrams are sent with the checksum of zero. This option is required. If a service provider does not have a mechanism to disable UDP checksum calculation, it may just store this option without doing any actions.
��
	
level= IPPROTO_TCP
��Value
�Type �Meaning��TCP_EXPEDITED_1122�BOOL�If set, the Service Provider implements the expedited data as specified in RFC-1222, otherwise the BSD style (default) is used. This option can be set on the connection only once, i.e. once on, this option can not be turned off. This option is not required.��

IP_OPTIONS
This option allows to specify IP options to be inserted into outgoing datagrams. Setting the new options overwrites all the previously specified options. Setting optval to zero means removing all the previously specified options. The support of IP_OPTIONS is not required. In order to check if IP_OPTIONS is supported or not, an application should use getsockopt() trying to get the current options. If getsockopt() fails, the IP_OPTIONS is not supported.

IP_TOS
This options allows to change the default value set by the TCP/IP service provider in the TOS field of IP header in outgoing datagrams. The support of IP_TOS is not required. In order to check if IP_TOS is supported or not, an application should use getsockopt() trying to get the current options. If getsockopt() fails, the IP_TOS is not supported.

IP_TTL
This options allows to change the default value set by the TCP/IP service provider in the TTL field of IP header in outgoing datagrams. The support of IP_TTL is not required. In order to check if IP_TTL is supported or not, an application should use getsockopt() trying to get the current options. If getsockopt() fails, the IP_TTL is not supported.

IP_HDRINCL
By default TCP/IP service provider forms the IP header for the outcoming datagrams. Some applications, however, may wish to provide their own IP header. Such applications should set IP_HDRINCL option into true and then supply a completed IP header at the front of each outgoing datagram. The only modification TCP/IP service provider may do to the supplied IP header is setting the ID field if the value supplied by the application is 0. The IP_HDRINCL option is applied only to the SOCK_RAW type of protocol. If a TCP/IP service provider supports SOCK_RAW protocol, it should also support IP_HDRINCL option.

IP_MULTICAST_IF
IP_MULTICAST_TTL
IP_MULTICAST_LOOP
IP_ADD_MEMBERSHIP
IP_DROP_MEMBERSHIP
Support of these options is required if a protocol supports multicast. This will be indicated in the PROTOCOL_INFO struct returned by WSAEnumProtocols() as follows:
	XPI_SUPPORTS_MULTIPOINT = 1
	XP1_MULTIPOINT_CONTROL_PLANE = 0
	XP1_MULTIPOINT_DATA_PLANE = 0

2.5. TCP/IP Function Details

2.5.1. Multicast

Generic WinSock multipoint functions support IP multicast. However, the TCP/IP transport providers who support multicast must also provide 'BSD-style' multicast support by supporting the corresponding multicast options. This will simplify the porting of existing multicast applications to WinSock2.

2.5.2. Raw Sockets

The TCP/IP service providers may support SOCK_RAW type of the socket. There are two types of such sockets: the first one assumes known protocol type as written in IP header, the second one allows any protocol number. An example of the first type of socket is ICMP, an example of the second type would be an experimental protocol which is not supported by the service provider.

If TCP/IP service provider supports SOCK_RAW sockets for the AF_INET family, the corresponding protocol(s) should be included in the list returned by WSAEnumProtocol(). The ipProtocol field of the PROTOCOL_INFO structure may be set to 0 if the service provider allows an application to specify any value for the protocol parameter for the socket()/WSASocket()/WSPSocket() functions.

 Note, that an application may not specify zero (0) as the protocol parameter for the socket()/WSASocket()/WSPSocket() functions if SOCK_RAW sockets are used.

The following rules are applied to the operations over SOCK_RAW sockets:

- when an application sends a datagram it may or may not include the IP header at the front of the outgoing datagrams depending on the IP_HDRINCL option set for the socket.

- an application always gets the IP header at front of each received datagram regardless of the IP_HDRINCL option.

- received datagrams are copied into all SOCK_RAW sockets which satisfy the following conditions:

- the protocol number specified for the socket should match the protocol number in the IP header of the received datagram;

- if a local IP address is defined for the socket, it should correspond to the destination address as specified in the IP header of the received datagram. An application may specify the local IP address by calling bind() functions. If no local IP address is specified for the socket, the datagrams are copied into the socket regardless of the destination IP address in the IP header of the received datagram;

- if a foreign address is defined for the socket, it should correspond to the source address as specified in IP header of the received datagram. An application may specify the foreign IP address by calling connect() functions. If no foreign IP address is specified for the socket, the datagrams are copied into the socket regardless of the source IP address in the IP header of the received datagram.

It is important to understand that SOCK_RAW sockets may get many ‘unexpected’ datagrams. For example, a PING program may use SOCK_RAW socket to send ICMP echo requests. While the application is expecting ICMP echo responses, all the other ICMP messages (like ICMP HOST_UNREACHABLE) may be delivered to this application also. Moreover, if several SOCK_RAW sockets are open on a machine at the same time, the same datagrams may be delivered to all the open sockets. An application must have a mechanism to recognize ‘its’ datagram and to ignore all the others. Such mechanism may include inspecting the received IP header, using unique IDs in the ICMP header (ProcessID, for example), etc.

2.5.3. IPv6 Support

	If TCP/IP service provider supports IPv6 addressing, it must install itself twice: once for IPv4 and once for IPv6 address family. So, WSAEnumProtocol() will return two PROTOCOL_INFO structures for each of the supported socket types (SOCK_STREAM, SOCK_DGRAM, SOCK_RAW). The iAddressFamily must by set to AF_INET for IPv4 addressing, and to AF_INET6 for IPv6 addressing.

	The IPv6 addresses are described in the following structures:

	struct sockaddr_in6 {
		short		sin6_family;	/* AF_INET6 */
		u_short 	sin6_port;	/* Transport level port number */
		u_long		sin6_flowinfo;	/* IPv6 flow information */
		struct in_addr6 	sin6_addr; /* IPv6 address */
	};

	struct	in_addr6 {
		u_char	s6_addr[16];	/* IPv6 address */
	};

	If an application uses WinSock 1.1 functions and wants to use IPv6 addresses, it may continue to use all the old functions which take struct sockaddr as one of the parameters (bind(), connect(), sendto(), recvfrom(), accept(), etc.). The only change that is required is to use struct sockaddr_in6 instead of struct sockaddr. However, all the name resolution functions (gethostbyname(), gethostbyaddr(), etc) and address conversion functions (inet_addr(), inet_ntoa()) can not be reused because they assume an IP address of 4 bytes in length. An application which wants to do name resolution and address conversion for IPv6 addresses must use WinSock2 specific functions (WSAGetAddressByName(), WSAStringToAddress(), WSAAddressToString(), etc.)

	The multicast for IPv6 has to be specified in more details <TBD>

2.5.4. Text representation of IPv6 addresses

	This section is copied from the “IP Version 6 Addressing Architecture” by R.Hinden and S. Deering <draft-ietf-ipngwg-addr-arch-03.txt>

	There are three conventional forms for representing IPv6 addresses as text strings:

1. The preferred form is x:x:x:x:x:x:x:x, where the 'x's are the hexadecimal values of the eight 16-bit pieces of the address.

 Examples:
 FEDC:BA98:7654:3210:FEDC:BA98:7654:3210

 1080:0:0:0:8:800:200C:417A

	Note that it is not necessary to write the leading zeros in an individual field, but there must be at least one numeral in every field (except for the case described in 2.).

2. Due to the method of allocating certain styles of IPv6 addresses, it will be common for addresses to contain long strings of zero bits. In order to make writing addresses containing zero bits easier a special syntax is available to compress the zeros. The use of two "::" indicate multiple groups of 16-bits of zeros.

For example the multicast address: 	 FF01:0:0:0:0:0:0:43
may be represented as:		 	FF01::43

	The "::" can only appear once in an address. The "::" can also be used to compress the leading or trailing zeros in an address.

3. An alternative form that is sometimes more convenient when dealing with a mixed environment of IPv4 and IPv6 nodes is x:x:x:x:x:x:d.d.d.d, where the 'x's are the hexadecimal values of the six high-order 16-bit pieces of the address, and the 'd's are the decimal values of the four low-order 8-bit pieces of the address (standard IPv4 representation). Examples:

 		0:0:0:0:0:0:13.1.68.3
		 0:0:0:0:0:FFFF:129.144.52.38

or in compressed form:
		 ::13.1.68.3
		 ::FFFF:129.144.52.38

2.6. TCP/IP Header File

/*	
**	WS2TCPIP.H - WinSock2 Extension for TCP/IP protocols
**
**	This file contains TCP/IP specific information for use
**	by WinSock2 compatible applications.
**
**	To provide the backward compatibility, all the TCP/IP
**	specific definitions that were included in the WINSOCK.H
**	 file are now included in WINSOCK2.H file. WS2TCPIP.H
**	file includes only the definitions introduced in the
**	“WinSock 2 Protocol-Specific Annex” document.
**
**	Rev 0.3	Nov 13, 1995
*/

#ifndef _WS2TCPIP_H_
#idefine _WS2TCPIP_H_

/* Structure to keep interface specific information */

typedef struct _INTERFACE_INFO
{
	u_long		iiFlags;		/* Interface flags */
	struct sockaddr	iiAddress;		/* Interface address */
	struct sockaddr	iiBroadcastAddress; 	/* Broadcast address */
	struct sockaddr	iiNetmask;		/* Network mask */
} INTERFACE_INFO;

/* Possible flags for the iiFlags - bitmask */

#define IFF_UP		0x00000001 /* Interface is up */
#define IFF_BROADCAST	0x00000002 /* Broadcast is supported */
#define IFF_LOOPBACK	0x00000004 /* this is loopback interface */
#define IFF_POINTTOPOINT 0x00000008 /*this is point-to-point interface*/
#define IFF_MULTICAST	0x00000010 /* multicast is supported */

/* Argument structure for IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP */

struct ip_mreq {
	struct in_addr imr_multiaddr;	/* IP multicast address of group */
	struct in_addr imr_interface;	/* local IP address of interface */
};

/* TCP/IP specific Ioctl codes */

#define SIO_GET_INTERFACE_LIST 	<TBD>

/* Option to use with [gs]etsockopt at the IPPROTO_IP level */

#define	IP_OPTIONS			1 /* set/get IP options */
#define	IP_HDRINCL			2 /* header is included with data */
#define	IP_TOS			3 /* IP type of service and preced*/
#define	IP_TTL			4 /* IP time to live */
#define	IP_MULTICAST_IF		9 /* set/get IP multicast i/f */
#define	IP_MULTICAST_TTL	 10 /* set/get IP multicast ttl */
#define	IP_MULTICAST_LOOP	 11 /*set/get IP multicast loopback */
#define	IP_ADD_MEMBERSHIP	 12 /* add an IP group membership */
#define	IP_DROP_MEMBERSHIP 13/* drop an IP group membership */

/* Option to use with [gs]etsockopt at the IPPROTO_UDP level */

#define UDP_NOCHECKSUM	1

/* Option to use with [gs]etsockopt at the IPPROTO_TCP level */

#define TCP_EXPEDITED_1122	0x0002

/* IPv6 definitions */

struct sockaddr_in6 {
		short		sin6_family; /* AF_INET6 */
		u_short 	sin6_port;	 /* Transport level port number */
		u_long	sin6_flowinfo; /* IPv6 flow information */
		struct in_addr6 	sin6_addr; /* IPv6 address */
};

struct in_addr6 {
		u_char	s6_addr[16];	/* IPv6 address */
};

#endif	/* _WS2TCPIP_H_ */

�3. IPX/SPX
3.1. IPX/SPX Introduction
This section covers extensions to WinSock 2 that are specific to IPX family of transport protocols. It also describes aspects of base WinSock 2 functions that require special consideration or which may exhibit unique behavior.

Address comments or questions regarding this material to:
		Tim Delaney
		Novell Inc.
		Tim_Delaney@Novell.com

		27 December 1995

	Fast Facts:
Protocol Name(s)�IPX, SPX��Description�Provides transport services over the IPX networking layer: IPX for unreliable datagrams, SPX for reliable, connection-oriented message streams.��Address Family�AF_IPX��Header File�WSIPX.H��

3.2. IPX/SPX Overview
This section discusses how to use the Winsock 2 API with the IPX family of protocols. Traditionally, the Winsock 1.x specification has been used with the IP family of protocols such as TCP and UDP. However, with the advent of Winsock 2, the API has been updated to more easily access a wide range of transport and network types. The Winsock 2 API is sufficiently generic that programmers need to know very little about the specifics of the IPX/SPX implementation. However, if you are moving traditional IPX applications to Winsock or desire more knowledge of the IPX/SPX implementation, this appendix is for you. Be aware that IPX networks operate differently than IP networks, and some consideration of this fact will most likely be evident in your code.

IPX/SPX features are defined in the header file wsipx.h.

3.2.1. The AF_IPX Address Family

The IPX address family defines the addressing structure for protocols that use standard IPX socket addressing. For these transports, an endpoint address consists of a network number, node address and socket number.

The network number is an administrative domain and typically names a single ethernet or token ring segment. The node number is a station’s physical address. The combination of net and node form a unique station address which is presumed to be unique in the world. Net/node numbers are represented in ASCII in either block or dashed notation as: ‘0101a040,00001b498765' or ‘01�01�a0�40,00�00�1b�49�87�65'. Leading zero’s need not be present.

The IPX socket number is a network/transport service number much like a TCP port number and is not to be confused with the Winsock socket descriptor. IPX Socket numbers are global to the end�station and cannot be bound to specific net/node addresses. For instance, if the end�station has two network interface cards, a bound socket can send and receive on both cards. In particular, datagram sockets would receive broadcast datagrams on both cards.

caution:	Sockaddr_ipx is 14 bytes long and is shorter than the 16 byte sockaddr reference structure. IPX/SPX implementations may accept the 16 byte length as well as the true length. If you use sockaddr_ipx and a hard coded length of 16 bytes, the implementation may assume that it has access to the two bytes following your structure.

	Field			Value

	sa_family		Address family AF_IPX in host order.
	sa_netnum		IPX network identifier in network order.
	sa_nodenum		Station node address, flushed right.
	sa_socket		IPX socket number in network order.

3.2.2. The IPX Family of Protocol Identifiers

The protocolparameter in socket() and WSASocket() is an identifier that establishes a network type and a method for identifying the various transport protocols that run on the network. Unlike IP, IPX does not use a single protocol value for selecting a transport stack. Since there is no network requirement to use a specific value for each transport protocol, we are free to assign them in a manner convenient for Winsock applications. We avoid values 0..255 in order to avoid collisions with the corresponding PF_INET protocol values.

 Name		 Value	Socket Types	 Description
Reserved�0�255��Reserved for PF_INET protocol values. ��NSPROTO_IPX�1000 - 1255�SOCK_DGRAM
SOCK_RAW�Datagram service for IPX.��NSPROTO_SPX�1256�SOCK_STREAM
SOCK_SEQPKT�Reliable packet exchange using fixed�sized packets.��
Note that when NSPROTO_SPX is specified, the SPX II protocol will automatically be utilized if both endpoints are capable of doing so.

3.2.3. Broadcast to Local Network
A broadcast can be made to the locally attached network by setting sa_netnum to binary 0's and sa_nodenum to binary 1's. This broadcast may be sent to the primary network for the device, or all locally attached networks at the option of the service provider. Broadcasts to the local network are not propegated by routers. 		

3.2.4. All routes broadcast.	
A general broadcast through the internet is achieved by setting the sa_netnum and sa_nodenum fields to binary 1's (�1). The service provider translates this request to a ‘type 20 packet’, which IPX routers recognize and forward. Your packet will visit all subnets and may be duplicated several times. Receivers must handle several duplicate copies of your datagram.

Use of this broadcast type is very unpopular among network administrators and its use should be extremely limited. Many routers disable this type of broadcast, leaving parts of the subnet invisible to your packet.

3.2.5. Directed broadcast.
Generally considered more network�friendly than all�routes broadcast, a directed broadcast limits the broadcast to the local network you specify. Fill sa_netnum with the target network number and sa_nodenum with binary 1's. Routers forward this request to the destination network where it becomes a local broadcast. Intermediate networks do not see this packet as a broadcast.

3.2.6. About Media Packet Size

Media packet size affects the ability of IPX protocols to transfer data across networks and can prove challenging to deal with in a transport�independent manner. IPX does not segment packets, nor does it report when packets are dropped due to size violations. This means that some entity on the end�station must maintain knowledge of the maximum packet size to be used on any given inter�network path. Traditionally, IPX datagram and SPX connection�oriented services have left this burden to the application, while SPXII has used Large Internet Packet negotiation to handle it transparently.

Winsock attempts to set rational packet size limits for its various IPX protocols as stated in the next section. These limits can be viewed and modified by applications via get/set socket options. When determining maximum packet size, the three areas of concern are:

	# Media packet size
	# Routable packet size
	# End�station packet size

Media packet size reflects the maximum packet size acceptable on any media the packet transverses to its destination. Packet size varies among differing media such as ethernet and token ring. The amount of data space within a packet can also vary within a given media, depending on the packet header arrangement. For instance, the effective data size of an ethernet packet varies depending on whether it is of type Ethernet II, Ethernet 802.2 or Ethernet SNAP.

Routable packet size reflects the maximum packet size an intermediate router is willing to forward. Modern IPX routers are built to route any size datagram as long as it remains within the media size of the sending and receiving network. However, older routers may limit maximum packet size to 576 bytes, including protocol headers.

End�station packet size reflects the size of the listen buffers end�stations have posted to receive incoming packets. Even when the media and router limits allow a packet through, it may be discarded by the end�station if the receiving application has posted a smaller buffer. Many traditional IPX/SPX applications limit receive buffer size such that the data portion must be no larger than 512 or 1024 bytes.

3.2.7. How Packet Size Affects Protocols

Media packet size issues discussed above affect the various PF_IPX protocols differently. A common strategy for handling various router and media size constraints is to use the full media size when the remote station’s network number matches the local station and fall back to the minimum packet size otherwise.

NSPROTO_IPX provides a datagram service and each datagram must reside within the maximum packet size. Winsock sets the maximum datagram packet size to the local media packet size minus the IPX header. Keep in mind, however, that if the packet is routed, it may hit router restrictions en�route. Make sure your application can fall back to 546 byte datagrams.

NSPROTO_SPX provides stream and sequenced�packet services. Winsock IPX/SPX lets data streams and messages span multiple packets, so packet size does not limit the amount of data handled by send() and recv(). However, the underlying media size must be set correctly or the first large packet will be undeliverable and the connection will reset. If the target station is on the local network, Winsock sets its packet size to the media packet size. Otherwise it defaults to 512 bytes. This size can be changed immediately after connect() or accept() via setsockopt().

NSPROTO_SPXII. SPXII features large internet packet negotiation to maintain a best�fit size for packets and does not require programmer intervention. However, if the remote station does not support SPXII and negotiates down to standard SPX, the NSPROTO_SPX rules above are in effect.

											 	
Protocol�Media�Type�Data Pkt
Size��NSPROTO_IPX�Ethernet�ethernet II�����802.3�����802.2�1466����SNAP����Token Ring�4 megabit�����16 megabit���

								
Protocol�Media�Type�Data Pkt
Size��NSPROTO_SPX�Ethernet�ethernet II�����802.3�����802.2�1454����SNAP����Token Ring�4 megabit�����16 megabit���

3.3. IPX/SPX Data Structures
3.4. IPX/SPX Controls
3.4.1. Socket Options

NSPROTO_IPX options are handled via getsockopt() and setsockopt(). Each option is accessed by setting level = NSPROTO_IPX and optname to a value given below.

		
level = NSPROTO_IPX�����Option�Type�Default�Meaning��IPX_CHECKSUM�bool�off�When set, IPX checksums outgoing packets and verifies the checksum of incoming packets.��IPX_TXPKTSIZE�int�Media size to a max of 1466�Sets maximum send datagram size. This size does not include the IPX header or any media headers that may also be used. May be increased to media size.��IPX_RXPKTSIZE�int�Media size to a max of 1466
�Sets maximum receive datagram size. This size does not include the IPX header or any media headers that may also be used. May be increased to media size.��IPX_TXMEDIASIZE�int�Primary board�Returns send media size which sets an upper bound for datagram size. ��IPX_RXMEDIASIZE�int�Primary board�Returns receive media size which sets an upper bound for datagram size.��IPX_PRIMARY�bool�Primary�Restricts traffic to the primary network board. ��

		
level = NSPROTO_SPX�����Option�Type�Default�Meaning��SPX_CHECKSUM�bool�off�When set, IPX checksums outgoing packets and verifies the checksum of incoming packets. Not supported on all platforms.��SPX_TXPKTSIZE�int�Media size to a max of 1466�Sets maximum send datagram size. This size does not include the SPX header or any media headers that may also be used. May be increased to media size.��SPX_RXPKTSIZE�int�Media size to a max of 1466
�Sets maximum receive datagram size. This size does not include the SPX header or any media headers that may also be used. May be increased to media size.��SPX_TXMEDIASIZE�int�Primary board�Returns send media size minus SPX and media headers. This sets an upper bound for message segmentation packet size. ��SPX_RXMEDIASIZE�int�Primary board�Returns receive media size minus SPX and media headers. This sets an upper bound for receive packet size.��SPX_RAWSPX�bool�off�When set, the IPX/SPX protocol header is passed with the data. ��

3.4.1.1. SPX_RAWSPX

When set, lets the application manage the IPX/SPX header. In this mode, Winsock will not subsegment messages, restricting maximum sen/recv message size to the underlying packet size. Packet size options are automatically adjusted to include the IPX/SPX headers. Fields settable by the application are detailed in wsipx.h.

3.5. IPX/SPX Function Specifics
3.6. IPX/SPX Header File
3.6.1. WSIPX.H
/* WSIPX.H -- Winsock 2 Extensions for IPX networks
 *
 * This file contains IPX/SPX specific information for use by
 * Winsock 2 compabable applications. Include this file below
 * WINSOCK.H to enable IPX features in your application.
 *
 * Rev 0.3, Feb 23, 1995
 */

#ifndef _WSIPX_
#define _WSIPX_

#pragma pack(1)

/* Transparant sockaddr definition for address family AF_IPX */

typedef struct sockaddr_ipx {
 u_short sa_family;
 u_char sa_netnum[4];
 u_char sa_nodenum[6];
 unsigned short sa_socket;

} SOCKADDR_IPX, *PSOCKADDR_IPX, FAR *LPSOCKADDR_IPX;

/* Protocol types within protocol family PF_IPX
 *
 * Protocol family PF_IPX reserves protocol id 0 - 255 for IP-conforming
 * protocol identifiers.
 *
 */

#define NSPROTO_UNSPEC 0
#define NSPROTO_IPX 1000
#define NSPROTO_SPX 1256
#define NSPROTO_SPXII 1257

/* Socket options for IPX level NSPROTO_IPX */

#define IPX_CATEGORY NSPROTO_IPX

#define IPX_CHECKSUM 0x0001
#define IPX_PRIMARY 0x0002
#define IPX_TXPKTSIZE 0x1001
#define IPX_RXPKTSIZE 0x1002
#define IPX_TXMEDIASIZE 0x1003
#define IPX_RXMEDIASIZE 0x1004

/* Socket options for SPX level NSPROTO_SPX */

#define SPX_CATEGORY NSPROTO_SPX

#define SPX_CHECKSUM IPX_CHECKSUM
#define SPX_RAWSPX 0x0010
#define SPX_TXPKTSIZE IPX_TXPKTSIZE
#define SPX_RXPKTSIZE IPX_RXPKTSIZE
#define SPX_TXMEDIASIZE IPX_TXMEDIASIZE
#define SPX_RXMEDIASIZE IPX_RXMEDIASIZE

/* net,node,socket portion of IPX header */

#define IPX_NET_SIZE 4
#define IPX_NODE_SIZE 6
#define IPX_SOCKET_SIZE 2

/* WSIpxAddr -- Ipx/Spx header net,node address structure */

typedef struct WSIpxAddrStruc
{
	 u_long Net;
	 u_char Node[IPX_NODE_SIZE];
	 u_short Socket;
	
} WSIpxAddr,*PWSIpxAddr,FAR *LPWSIpxAddr;

#define WSIpxNode0To3(pIpxAddr) (*(UINT32*)(&((PWSIpxAddr*)pIpxAddr)->Node[0])
#define WSIpxNode4To5(pIpxAddr) (*(UINT16*)(&((PWSIpxAddr*)pIpxAddr)->Node[3])

/* WSIpxHeader -- IPX header structure when in SOCK_RAW mode */

typedef struct WSIpxHeaderStruc
{
	 u_short Checksum; // 0x00
	 u_short Length; // 0x02
	 u_char XportCtl; // 0x04
	 u_char PktType; // 0x05
	 WSIpxAddr DestAddr; // 0x06
	 WSIpxAddr SrcAddr; // 0x12
} WSIpxHeader, *PWSIpxHeader,FAR *LPWSIpxHeader; // 0x1E total length

/* Standard IPX packet types */

#define IPXTYPE_UNKNOWN 0x00
#define IPXTYPE_RIP 0x01
#define IPXTYPE_ECHO 0x02
#define IPXTYPE_ERROR 0x03
#define IPXTYPE_IPX 0x04
#define IPXTYPE_SPX 0x05
#define IPXTYPE_NCP 0x11
#define IPXTYPE_NETBIOS 0x14
#define IPXTYPE_INTERNET_BROADCAST IPT_NETBIOS

/* WSSpxHeader -- SPX Header structure when in SPXL_SPXRAW mode. */

typedef struct WSSpxHeaderStruc
{
	 WSIpxHeader IpxHdr; // 0x00
	 u_char ConnCtrl; // 0x1E
	 u_char DataStreamType; // 0x1F
	 u_short SrcConnId; // 0x20
	 u_short DstConnId; // 0x22
	 u_short SendSeq; // 0x24
	 u_short AckSeq; // 0x26
	 u_short AllocNum; // 0x28
} WSSpxHeader, *PWSSpxHeader,FAR *LPWSSpxHeader; // 0x2A (42) size

/* Connection Control Bits */

#define SPX_SYSTEM_PACKET_BIT 0x80
#define SPX_SEND_ACK_BIT 0x40
#define SPX_ATTENTION_BIT 0x20
#define SPX_END_OF_MESSAGE_BIT 0x10

/* Data Stream Types.
 *
 * Values in the range 0 - 0xfd are user-definable.
 */

#define SPX_HANG_UP 0xFE
#define SPX_HANG_UP_ACK 0xFF

/* a sampling of well-known socket types in network hi-lo order.
 * use ntohl() for local representation.
 */

#define IPXSKT_DYNAMIC 0x0000
#define IPXSKT_NCP 0x5104
#define IPXSKT_SAP 0x5204
#define IPXSKT_RIP 0x5304
#define IPXSKT_NETBIOS 0x5504
#define IPXSKT_DIAGNOSTICS 0x5604
#define IPXSKT_PING 0x8690

#endif /* _WSIPX_ */

�4. DECnet
4.1. DECnet Introduction
This section covers extensions to WinSock 2 that are specific to DECnet. It also describes aspects of base WinSock 2 functions that require special consideration or which may exhibit unique behavior.

Address comments or questions regarding this material to:
		Cathy Bence
		Digital Equipment Corp.
		bence@ranger.enet.dec.com

		27 December 1995

	Fast Facts:
Protocol Name(s)�DNPROTO_NSP��Socket Type�SOCK_SEQPACKET��Description�Provides transport service over the DECnet network layer. ��Address Family�AF_DECnet��Header File�WS2DNET.H��
4.2. DECnet Overview

The Digital Network Architecture (DNA) consists of an architectural overview and a set of specifications defining various network protocol layers. DECnet refers to a set of products that implement the Digital Network Architecture. DECnet Phase IV, as introduced in 1982, supports peer-to-peer connectivity in both local and wide area networks.

4.2.1. The DNPROTO_NSP Protocol Family

	DECnet Phase IV uses Network Services Protocol (NSP) as its transport layer.

4.2.2. The AF_DECnet Address families

4.2.2.1. DECnet Phase IV node addresses
DECnet Phase IV node addresses are hierarchical, indicating the a routing area and the node
number within that area. The binary format of the address is a 16-bit unsigned integer. The high-order 6 bits indicate the area, the low-order 10 bits are the node number within the area.
The ASCII format of the address is area.number with area in the range 1-63, and number in the range 1-1023.

For example: A DECnet node address in area 5, number 7 is represented as follows:
 	ASCII format		“5.7”
	Binary value 		000101 0000000111.
	Hexadecimal value 	0x1407

4.2.2.2. DECnet extended addressing
DECnet extended addressing allows the DECnet NSP transport to be run over the OSI routing layer. Sockets opened via AF_DECnet will assume that addresses of length 3-20 bytes are OSI-style addresses.

4.2.2.3. DECnet objects
DECnet client tasks specify the server task they want to communicate with by using network object number and task names. The DECnet object number is an 8-bit unsigned value. Object numbers in the range 1-127 are reserved as generic objects for Digital use. Numbers 1-128 are available for user-written generic objects.

If the object number is 0, then the network connect is done to a specific server task name. Task names are 1-16 byte ASCII strings.

For example:
	#17	FAL		Generic DECnet file access listener
		#19	NML		Generic DECnet network management listener
		#0	DEBUG_TASK	User-specified debug server task

4.2.3. The SOCK_SEQPACKET Socket Type

DECnet sockets use sequenced packets which maintain message boundaries across the network.

4.3. DECnet Data Structures

4.3.1. Manifest Constants (WINSOCK2.H)

#define AF_DECnet	 	12	// DECnet address family
#define SOCK_SEQPACKET 	 5	// Socket type - Message-oriented

4.3.2. Manifest Constants (WS2DNET.H)

#define DNPROTO_NSP		 1	// DECnet NSP transport protocol
 	#define SO_LINKINFO		 7	// Get DECnet logical link information

#define DN_MAXADDL 		20 	// Maximum DECnet address length
#define DN_ADDL	 	 2	// DECnet NSP address length
#define DN_MAXOPTL		16	// Maximum DECnet optional data
#define DN_MAXOBJL		16	// Maximum DECnet object name
#define DN_MAXACCL		40 	// Maximum DECnet access string
					// length (39 bytes + trailing zero)
	#define DN_MAXALIASL 128	// Maximum DECnet alias string length
	#define DN_MAXNODEL 256	// Maximum node string length

	// DECnet logical link states
	#define LL_INACTIVE		 0	// logical link inactive
	#define LL_CONNECTING	 1	// logical link connecting
	#define LL_RUNNING		 2	// logical link running
	#define LL_DISCONNECTING	 3	// logical link disconnecting

	// DECnet incoming access types
	#define DN_NONE 0x00
	#define DN_RO 0x01
	#define DN_WO 0x02
	#define DN_RW 0x03

4.3.3. Data Structures (WS2DNET.H)

4.3.3.1. DECnet node address

// if a_len = 2, DECnet NSP transport & DECnet routing
// if a_len > 2, DECnet NSP transport & OSI routing
struct dn_naddr {� unsigned short a_len; // address length - set to DN_ADDL
 unsigned char a_addr[DN_MAXADDL]; // DECnet address�};

4.3.3.2. DECnet socket

// DECnet uses object names & numbers instead of ports
struct sockaddr_dn {� unsigned short sdn_family; // AF_DECnet� unsigned char sdn_flags;	 // Reserved - set to zero� unsigned char sdn_objnum; // DECnet object number� unsigned short sdn_objnamel; // DECnet object name length� unsigned char sdn_objname[DN_MAXOBJL]; // DECnet object name� struct dn_naddr sdn_add;	 // DECnet address�};

4.3.3.3. DECnet node entity

struct nodeent_f {� char FAR *n_name; // pointer to name of DECnet node � unsigned short n_addrtype; // address type � unsigned short n_length; // address length� unsigned char FAR *n_addr; // pointer to DECnet address� unsigned char FAR *n_params; � unsigned char n_reserved[16]; // Reserved�};

4.3.3.4. DECnet optional data

struct optdata_dn { � unsigned short opt_status; 	 // status return� unsigned short opt_optl; 	 // length of data� unsigned char opt_data[DN_MAXOPTL]; // Optional data �};

4.3.3.5. DECnet outgoing access control data

struct accessdata_dn {� unsigned short acc_accl; 	 // account length� unsigned char acc_acc[DN_MAXACCL]; // account string � unsigned short acc_passl; 	 // password length� unsigned char acc_pass[DN_MAXACCL]; // password string � unsigned short acc_userl; 	 // user length � unsigned char acc_user[DN_MAXACCL]; // user string �};

4.3.3.6. DECnet incoming access control

// DECnet incoming access control information
struct dnet_accent
{
 unsigned char dac_status;
 unsigned char dac_type; // DN_NONE, etc.
 char dac_username[DN_MAXACCL];
 char dac_password[DN_MAXACCL];
};

4.3.3.7. DECnet call data

struct calldata_dn {
struct optdata_dn { � unsigned short opt_status; � unsigned short opt_optl; � unsigned char opt_data[DN_MAXOPTL]; �};
struct accessdata_dn {� unsigned short acc_accl; � unsigned char acc_acc[DN_MAXACCL];� unsigned short acc_passl; � unsigned char acc_pass[DN_MAXACCL]; � unsigned short acc_userl; � unsigned char acc_user[DN_MAXACCL]; �}
};

4.3.3.8. DECnet logical link

struct linkinfo_dn {
 unsigned short idn_segsize;
 unsigned char idn_linkstate;	
};

4.4. DECnet Function Details

4.4.1. accept() / WSAAccept() / WSPAccept()

4.4.1.1. Immediate accept() with no optional or access data
 In order to accept a connection on a DECnet socket, the parameter addr should point to a sockaddr_dn structure.

	#include <ws2dnet.h>

	 SOCKET WSAAPI accept (SOCKET s, struct sockaddr_dn FAR * addr, int FAR * addrlen);

 	SOCKET WSAAPI WSAAccept (SOCKET s, struct sockaddr_dn FAR * addr, int FAR * addrlen, LPCONDITIONPROC lpfnCondition, DWORD dwCallbackData);

	SOCKET WSPAPI WSPAccept(SOCKET s, struct sockaddr_dn FAR * addr, int FAR * addrlen, LPCONDITIONPROC lpfnCondition, DWORD dwCallbackData, �int FAR * lpAcceptAction,int FAR * lpErrno);

addr	A pointer to a sockaddr_dn structure which receives the address of the connecting entity, as known to the communications layer.

4.4.1.2. Deferred accept() with optional and access data
DECnet sockets support both immediate and deferred accepts. It also supports the exchange of up to 16 bytes of optional data on accept() and connect(). It also supports the receipt of DECnet access control information by the server from the client on a connect request.

	#include <ws2dnet.h>

 	SOCKET WSAAPI WSAAccept (SOCKET s, struct sockaddr_dn FAR * addr, int FAR * addrlen, LPCONDITIONPROC lpfnCondition, DWORD dwCallbackData);

	SOCKET WSPAPI WSPAccept(SOCKET s, struct sockaddr_dn FAR * addr, int FAR * addrlen, LPCONDITIONPROC lpfnCondition, DWORD dwCallbackData, �int FAR * lpAcceptAction,int FAR * lpErrno);

	DECnet optional data is passed in an optdata_dn structure. Access control data is passed in an accessdata_dn structure.

	 In the CALLBACK function, the lpCallerData should point to a calldata_dn structure which contains concatenated opdata_dn and accessdata_dn structures. If lpCallerData is set to NULL, no additional data will be read from the caller. If either the opdata_dn.opt_optl or the accessdata_dn.acc_userl are set to zero, that portion of the structure will be ignored.

	The accept() only reads accessdata_dn, it does not write it, so only optdata_dn will be returned by the server. The lpCalleeData pointer should point to a buffer containing the opdata_dn structure. If lpCalleeData is set to NULL no optional data will be read from the server.

4.4.2. bind() / WSPBind()

In order to bind a local DECnet address to a socket, the parameter name should point to a sockaddr_dn structure.

	#include <ws2dnet.h>

	int WSAAPI bind (SOCKET s, const struct sockaddr_dn FAR * name, int namelen);

	int WSAAPI WSPBind (SOCKET s, const struct sockaddr_dn FAR * name, int namelen, int FAR * lpErrno);

name	A pointer to a sockaddr_dn structure which contains the DECnet address to be bound to this socket.

4.4.3. connect() / WSAConnect() / WSPConnect()

4.4.3.1. Connect() with no optional or access data
 In order to establish a connection to a DECnet peer, the parameter name should point to
a sockaddr_dn structure.

	#include <ws2dnet.h>

	int WSAAPI connect (SOCKET s, const struct sockaddr_dn FAR * name,
	int namelen);

 	int WSAAPI WSAConnect (SOCKET s, const struct sockaddr_dn FAR * name, �int namelen, LPWSABUF lpCallerData, LPWSABUF lpCalleeData, �GROUP g, LPQOS lpSQOS, LPQOS lpGQOS);

 	int WSPAPI WSPConnect(SOCKET s, const struct sockaddr_dn FAR * name, int namelen, LPWSABUF lpCallerData, LPWSABUF lpCalleeData, LPQOS lpSQOS, int iSFlowspecLen, LPQOS lpGQOS, int iGFlowspecLen, int FAR * lpErrno);

name	A pointer to a sockaddr_dn structure which contains the DECnet address and object to which the socket is to be connected.

4.4.3.2. Optional and access data on connect()
DECnet sockets support supports the exchange of up to 16 bytes of optional data on a WSAConnect(). It also supports the sending of DECnet access control information from the client to the server on a connect request.

	#include <ws2dnet.h>

 	int WSAAPI WSAConnect (SOCKET s, const struct sockaddr_dn FAR * name, �int namelen, LPWSABUF lpCallerData, LPWSABUF lpCalleeData, �GROUP g, LPQOS lpSQOS, LPQOS lpGQOS);

 	int WSPAPI WSPConnect(SOCKET s, const struct sockaddr_dn FAR * name, int namelen, LPWSABUF lpCallerData, LPWSABUF lpCalleeData, LPQOS lpSQOS, int iSFlowspecLen, LPQOS lpGQOS, int iGFlowspecLen, int FAR * lpErrno);

lpCallerData	A pointer to the user data that is to be transferred from the client to the server during connection establishment.

lpCalleeData	A pointer to the optional data that is to be transferred back from the server during connection establishment.

	DECnet optional data is passed in an optdata_dn structure. Access control data is passed in an accessdata_dn structure.

	The lpCallerData should point to a calldata_dn structure which contains concatenated opdata_dn and accessdata_dn structures. If lpCallerData is set to NULL, no additional data will be sent to the server. If either the opdata_dn.opt_optl or the accessdata_dn.acc_userl are set to zero, that portion of the structure should be ignored.

	If lpCalleeData is set to NULL no optional data will be read from the server. . If either the opdata_dn.opt_optl or the accessdata_dn.acc_userl are set to zero, that structure should be ignored. The accept() only returns optional data, not access data so the lpCalleeData pointer should point to a buffer containing the opdata_dn structure. If lpCalleeData is set to NULL no optional data will be read from the server.

4.4.4. getpeername() / WSPGetPeerName()

In order to get the address of the DECnet peer to which a socket is connected, the parameter name should point to a sockaddr_dn structure.

	#include <ws2dnet.h>

 	int WSAAPI getpeername (SOCKET s, struct sockaddr_dn FAR * name, int FAR * namelen);

	int WSPAPI WSPGetPeerName(SOCKET s, struct sockaddr_dn FAR * name, int FAR * namelen, int FAR * lpErrno);

name	A pointer to a sockaddr_dn structure which will return the DECnet address of the DECnet peer to which a socket is connected.

4.4.5. getsockname() / WSPGetSockName()

In order to get the local name for a DECnet socket, the parameter name should point to a sockaddr_dn structure.

	#include <ws2dnet.h>

 	int WSAAPI getsockname (SOCKET s, struct sockaddr_dn FAR * name, int FAR * namelen);

	int WSPAPI WSPGetSockName(SOCKET s, struct sockaddr_dn FAR * name, int FAR * namelen, int FAR * lpErrno);

name	A pointer to a sockaddr_dn structure which will return the local name to which a DECnet socket is connected.

4.4.6. getsockopt() / WSPGetSockOpt()

Description	The SO_LINKINFO socket option returns a struct linkinfo_dn containing the current state of the specified DECnet logical link.

	int WSPAPI WSPGetSockOpt(SOCKET s, int level, int optname, char FAR * optval, int far * optlen, int FAR * lpErrno);

		s		descriptor identifying socket
		level		DNPROTO_NSP
		optname		SO_LINKINFO	
		optval		struct FAR * linkinfo_dn
		optlen		sizeof(struct linkinfo_dn)
		lpErrno		pointer to error code

Return Value	If no error occurs, WSPGetSockOpt() returns 0 and the linkinfo_dn structure pointed to by optval will contain the current transport segment size and logical link state. See the LL_* manifest constants for valid link states. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code is available in lpErrno.
	

4.4.7. socket() / WSASocket() / WSPSocket()

In order to create a socket which is bound to a DECnet service provider the following values should passed to the socket() call.

 	#include <ws2dnet.h>

	SOCKET WSAAPI socket (int af, int type, int protocol);

	SOCKET WSAAPI WSASocket(int af, int type, int protocol, ...)

	SOCKET WSPAPI WSPSocket(int af, int type, int protocol, ...)

af = AF_DECnet 		DECnet address family
The only format currently supported is PF_INET, which is the ARPA Internet address format.
type = SOCK_SEQPACKET	Sequenced packets (message-oriented)

		protocol = DNPROTO_NSP	DECnet NSP transport protocol

4.4.8. Out-of-band data

DECnet supports the sending and receiving of out-of-band data via the MSG_OOB flag for recv() and send(). If a send() with the MSG_OOB flag is sent, the recv() must be posted with MSG_OOB in order to read the data. To check for the presence of out-of-band data, use select() with exceptfds set, or a WSAAsyncSelect() with FD_OOB set.

DECnet does not support inline out-of-band data via the setsockopt() SO_OOBINLINE flag.

4.5. DECnet-specific Extended Functions Identifiers

This section presents the DECnet-specific extensions to the WinSock 2 specification.

The WinSock 2 function extension mechanism works as follows: a call is made to WSAIoctl() with the control code SIO_GET_EXTENSION_FUNCTION_POINTER which returns a function pointer to a specified extension function.

The follow DECnet-specific extension identifiers have been allocated by the WS2 identifier clearinghouse.
Note that we reserve 32 in each block.

//
// DECnet
//
#define WS2API_DECNET_dnet_addr 1
#define WS2API_DECNET_dnet_eof 2
#define WS2API_DECNET_dnet_getacc 3
#define WS2API_DECNET_dnet_getalias 4
#define WS2API_DECNET_dnet_htoa 5
#define WS2API_DECNET_dnet_ntoa 6
#define WS2API_DECNET_getnodeadd 7
#define WS2API_DECNET_getnodebyaddr 8
#define WS2API_DECNET_getnodebyname 9
#define WS2API_DECNET_getnodename 10
//
// Next ones start at 33
//

4.5.1. dnet_addr()

Description	Convert an ASCIZ DECnet Phase IV node address string to a binary address.

	#include <ws2dnet.h>

	struct dn_naddr FAR * WSAAPI dnet_addr(const char FAR *cp);

cp	Specifies the address of a character string that contains a DECnet node address in the form a.n (area.node). For example, 9.440 is a DECnet Phase IV node number.

Return Value	dnet_addr() returns a pointer to dn_naddr structure

	If successful, it returns a pointer to a dn_naddr structure which contains a binary DECnet address. Applications should copy this data before issuing another dnet_addr call. Otherwise, it returns a NULL pointer.

4.5.2. dnet_eof()

Description	Test a DECnet socket for an end-of-file condition.

	int WSAAPI dnet_eof(SOCKET s);

s	Specifies DECnet socket to test.

Return Value	If the connection is still active (either in a running or connected state), it returns 0. If the connection is inactive, a 1 is returned.

4.5.3. dnet_getacc()

Description	Retrieve local access control for incoming DECnet connection based on the specified user name.

	#include <ws2dnet.h>

	struct dnet_accent FAR * WSAAPI dnet_getacc(struct dnet_accent FAR *nacc)

nacc	Pointer to the incoming access control record. nacc.dac_username contains the user name. This ASCIZ character string has a maximum length of DN_MAXACCL.

Return Value	If successful, it returns a pointer to a dnet_accent structure. Applications should copy this data before issuing another dnet_getacc call. Otherwise, it returns a NULL pointer.

4.5.4. dnet_getalias()

Description	The dnet_getalias function returns any default access control information associated with a specific node.

	char FAR * WSAAPI dnet_getalias(const char FAR *node)

	The following ASCIZ strings are all valid returns:

	“node”
	“node/username”
	“node/username/password”
	“node/username/password/account”
	“node/username//account”

node	Pointer to the node name for which dnet_getalias should search.

Return Value	The call returns the address of a static buffer that contains the information from the local DECnet node database. Applications should copy this data before issuing another dnet_getalias call.

4.5.5. dnet_htoa()

Description	The dnet_htoa function searches the local node database. If it finds the node name for the specified node address, it returns a pointer to an ASCIZ DECnet name string. Otherwise, it returns an ASCIZ node address string.

	#include <ws2dnet.h>

	char FAR *WSAAPI dnet_htoa(const struct dn_naddr FAR *add);

add	Specifies the address of a dn_naddr structure that contains the node number for which to search.

Return Value	The function returns the address of a static buffer that contains the node string. This string must be copied before dnet_htoa is called again.

4.5.6. dnet_ntoa()

Description	The dnet_ntoa function converts a DECnet node address from binary to ASCIZ format. It converts the pointer to a dn_naddr to a string in the form 9.123, for example.

	#include <ws2dnet.h>

	char FAR *WSAAPI dnet_ntoa(const struct dn_naddr FAR *add);

add	Specifies the address of a dn_naddr structure that contains the node number to convert.

Return Value	The function returns a pointer to a static string that contains the node address. This string must be copied before dnet_ntoa is called again.

4.5.7. getnodeadd()

Description	The getnodeadd function returns the local node’s DECnet address.

	#include <ws2dnet.h>

	struct dn_naddr FAR *WSAAPI getnodeadd(void);

Return Value	The function returns the address of a static dn_naddr structure containing the local node’s DECnet address. Applications should copy this data before issuing another getnodeadd call. If DECnet is not installed, it returns a NULL pointer

4.5.8. getnodebyaddr()

Description	The getnodebyaddr function searches for a DECnet node name that matches a specified DECnet address. The address is a 16-bit binary DECnet address, where the high 6 bits are the DECnet area number and the low 10 bits are the DECnet node number. DECnet Phase IV node names consist of 1 to 6 alphanumeric characters with at least one alphabetic character.

	#include <ws2dnet.h>

	struct nodeent_f FAR *WSAAPI getnodebyaddr(const unsigned char FAR *addr, int len, int type);

addr	Pointer to the address for which getnodebyaddr should search.

len	Length in bytes of the requested address (range DN_ADDL to DN_MAXADDL).

type	Address family of the address (AF_DECnet).

Return Value	The function returns a pointer to a static nodeent_f structure. The application must copy this data before issuing another getnodebyaddr call. If the end of file is reached, a NULL pointer is returned.

4.5.9. getnodebyname()

Description	The getnodebyname function searches for a DECnet node address that matches the specified DECnet node name. DECnet Phase IV node names consist of 1 to 6 alphanumeric characters with at least one alphabetic character.

	#include <ws2dnet.h>

	struct nodeent_f FAR *WSAAPI getnodebyname(const char FAR *);

name	Pointer to an ASCIZ node name for which to search.

Return Value	The function returns a pointer to a static nodeent_f structure. The application must copy this data before issuing another getnodebyaddr call. If the end of file is reached, a NULL pointer is returned.

4.5.10. getnodename()

Description	The getnodename function returns the name of the local DECnet node. DECnet Phase IV node names consist of 1 to 6 alphanumeric characters with at least one alphabetic character.

	char FAR *WSAAPI getnodename(void);

Return Value	The function returns the address of a static string that contains the local node’s ASCIZ DECnet name, or a NULL pointer if DECnet is not installed. The maximum size for a returned string is DN_MAXNODEL. The application must copy this data before issuing another getnodename call.

4.6. DECnet Header File

Partial contents of DECnet header file WS2DNET.H are defined as follows:

//**�// Winsock V2.0 DECnet definitions		File: WS2DNET.H �///***�// Copyright (c) 1995, All Rights Reserved			 �// Digital Equipment Corporation, Littleton, MA.			 �//**��#ifndef WS2DNET_H�#define WS2DNET_H��#include <winsock2.h>��//�// DECnet Winsock Definitions�//�#define DNPROTO_NSP 1 // DECnet NSP transport protocol number ��#define DN_MAXADDL	 20 // maximum DECnet address length�#define DN_ADDL 2 // DECnet NSP address length�#define DN_MAXOPTL 16 // Maximum DECnet optional data length�#define DN_MAXOBJL 16 // Maximum DECnet object name length�#define DN_MAXACCL 39 // Maximum DECnet access string length�#define DN_MAXALIASL 128 // Maximum DECnet alias string length�#define DN_MAXNODEL 7 // Maximum DECnet Phase IV node string length��//�// DECnet address structure�// �typedef struct dn_naddr {�	unsigned short	a_len;		 // length of address �	unsigned char a_addr[DN_MAXADDL]; // address as bytes �} DNNADDR, FAR *LPDNNADDR;��//�// DECnet socket address structure�// �typedef struct sockaddr_dn {�	unsigned short	sdn_family;	 // AF_DECnet �	unsigned char	sdn_flags;	 // flags �	unsigned char	sdn_objnum;	 // object number �	unsigned short	sdn_objnamel;	// size of object name �	char sdn_objname[DN_MAXOBJL];	// object name �	struct dn_naddr sdn_add;	 // node address �} SOCKADDRDN, FAR *LPSOCKADDRDN;��#define sdn_nodeaddrl	sdn_add.a_len	// node address length �#define sdn_nodeaddr	sdn_add.a_addr 	// node address ��// Common DECnet object numbers (used in sockaddr_dn)�#define DNOBJECT_FAL	17		// file access listener �#define DNOBJECT_NICE	19		// network management �#define DNOBJECT_DTERM	23		// remote terminals �#define DNOBJECT_MIRROR	25		// loopback mirror �#define DNOBJECT_EVR	26		// event receiver �#define DNOBJECT_MAIL11	27		// Mail-11 service �#define DNOBJECT_PHONE	29		// phone utility �#define DNOBJECT_CTERM	42		// command terminals �#define DNOBJECT_DTR	63		// data test receiver ��//�// DECnet node structure�//�typedef struct	nodeent_f {�	char 		FAR * n_name; // name of node �	unsigned short	n_addrtype;	// node address type �	unsigned short	n_length;	// address length�	unsigned char	FAR * n_addr;	// address �	unsigned char	FAR * n_params;	// node parameters �	unsigned char n_reserved[16];	// Reserved�} NODEENTF, FAR *LPNODEENTF; ��//�// DECnet set/get DSO_CONDATA, DSO_DISDATA (optional data) structure�// �typedef struct optdata_dn {�	unsigned short	opt_status;	 // extended status return �	unsigned short	opt_optl;	 // user data length �	unsigned char opt_data[DN_MAXOPTL]; // user data �} OPTDATADN, FAR *LPOPTDATADN;��//�// DECnet set/get DSO_CONACCESS access (control data) structure�// �typedef struct accessdata_dn {�	unsigned short	acc_accl;	 // account string length �	unsigned char	acc_acc[DN_MAXACCL+1];	// account string �	unsigned short	acc_passl;	 // password string length �	unsigned char	acc_pass[DN_MAXACCL+1];	// password string �	unsigned short	acc_userl;	 // user string length �	unsigned char	acc_user[DN_MAXACCL+1];	// user string �} ACCESSDATADN, FAR *LPACCESSDATADN;��//�// DECnet call data structure (concatenated access and optional data)�//�typedef struct calldata_dn { � struct optdata_dn optdata_dn;� struct accessdata_dn accessdata_dn;�} CALLDATADN, FAR *LPCALLDATADN; � �//�// DECnet incoming access control structure�//�typedef struct dnet_accent {� unsigned char dac_status; // Reserved � unsigned char dac_type; // DN_NONE, etc. � char dac_username[DN_MAXACCL+1]; � char dac_password[DN_MAXACCL+1]; �} DNETACCENT, FAR *LPDNETACCENT;��#define DN_NONE 0x00�#define DN_RO 0x01�#define DN_WO 0x02�#define DN_RW 0x03�� �//***�// DECnet function prototypes	�//*** �struct dn_naddr FAR *WSAAPI dnet_addr(const char FAR *);�int WSAAPI dnet_eof(SOCKET);�struct dnet_accent FAR *WSAAPI dnet_getacc(const struct dnet_accent FAR *);�char FAR *WSAAPI dnet_getalias(const char FAR *);�char FAR *WSAAPI dnet_htoa(const struct dn_naddr FAR *);�char FAR *WSAAPI dnet_ntoa(const struct dn_naddr FAR *);�struct dn_naddr FAR *WSAAPI getnodeadd(void);�struct nodeent_f FAR *WSAAPI getnodebyaddr(const unsigned char FAR *addr, int, int);�struct nodeent_f FAR *WSAAPI getnodebyname(const char FAR *);�char FAR *WSAAPI getnodename(void);���#endif	// WS2DNET_H�
��

�5. OSI
5.1. OSI Introduction
This section covers extensions to WinSock 2 that are specific to OSI transports. It also describes aspects of base WinSock 2 functions that require special consideration or which may exhibit unique behavior when used with OSI transports.

Address comments or questions regarding this material to:
		Adrian Dawson
		ICL
		ald@oasis.icl.co.uk

		31 July 1995

	Fast Facts:
Protocol Name(s)�TP4/CLNS, TP4/NULL, etc.��Description�Provides OSI transport services over OSI networking layer: CLTS for unreliable datagrams and COTS for reliable connection-orientated message streams.��Address Family�AF_OSI��Header File�WS2OSI.H��

5.2. OSI Overview
The International Organisation for Standardisation (ISO) produce a set of International Standards to facilitate interconnection of computer systems. The Open Systems Interconnection (OSI) Reference Model subdivides the set into a series of layers. Windows Sockets allows an application to use OSI Transport protocols.

Examples of OSI profiles that may be implemented are:
TP4/CLNS	- Transport class 4 over Connectionless-mode Network Service
TP4/NULL	- Transport class 4 over Null Network Service
TP0/CONS	- Transport class 0 over Connection-mode Network Service
NULL/CONS	- Null Transport over Connection-mode Network Service
TP0/TCP	- Transport class 0 over TCP/IP (RFC1006)

The OSI profile is designated either by the protocol parameter or the lpProtocolInfo parameter to the WSASocket() API. The TP4/NULL profile is a subset of the TP4/CLNS profile, and is selected by the addressing information. The default OSI profile is TP4/CLNS.

An application must use the PROTOCOL_INFO structure returned by WSAEnumProtocols() to discover the services provided by a particular OSI profile. For example not all OSI profiles support Connect and disconnect data.

5.2.1. Expedited Data
OSI protocols may support expedited data. Expedited data is not subject to the flow control procedures for normal data, and may overtake normal data.

5.2.2. Qualified Data
The ISO 8208/X.25 protocol supports qualified data. Qualified data is sent by using the WSAIoctl() function to mark the following data as qualified, and then using the normal Windows Sockets send() functions. Qualified data is received by using the WSAIoctl() function to wait for notification of qualified data, and then using the normal Windows Sockets recv() functions.

5.2.3. Reset
The ISO 8208/X.25 protocol supports resets. A reset may be generated by using the WSAIoctl() function. A reset is notified to the application using the WSAIoctl() function. Two bytes of reset data are permitted. These are interpreted as reset cause and reset diagnostic. For further details of this data see the X.25 specification.

5.2.4. Quality Of Service
The provider specific parameters in the Flow Spec are encoded in a Type/Length/Data format to enable multiple parameters to be provided.
For example ISO 8208/X.25 call facilities may be specified by using the type OSI_PARAM_ID_X25_CALL_FACILITY.

5.2.5. Option Profiles
OSI protocols typically have a large number of options. These options may include preferred class, alternative classes, timers, checksums, lifetime, and others. An option profile name may be used to select a set of options available in a particular vendors OSI protocol implementation. The Windows Sockets specification does not define the options that may be selected.
Option profile names are specified in the OSI address structure. If an option profile name is not specified, the OSI protocol will use its default option profile.

5.2.6. Address Format
Two address formats for the OSI protocol are defined in section 3. The SOCKADDR_TP format is retained for compatibility with Windows Sockets 1.1 OSI protocols. Windows Sockets 2 OSI protocols support the SOCKADDR_OSITP format. It contains a Transport Selector (TSEL), Network Service Access Point (NSAP), Sub Network address (SNPA), extended addressing information, and the option profile name.
The SNPA follows the rules of the Sub Network in use. For example an SNPA would contain a 6 byte MAC address followed by a 1 byte Link Service Access Point (LSAP) giving a 7 byte SNPA.
Some X.25 protocols use connect user data to select the listening socket. The extended addressing information contains connect user data. This field must not be specified for other OSI protocols.
The address structure also contains the option profile name. If the name length is zero, the default option profile is used.
The TP4/NULL OSI protocol profile is selected by using the TP4/CLNS protocol, selecting a zero length NSAP, and specifying the MAC address and LSAP in the Sub Network address field.
5.3. OSI Data Structures
The following structure is used to encode the provider specific parameters in the flow specification:
typedef struct _osispecflowparam
{
 u_short paramID; // Parameter ID.
 u_short paramLength; // Length of following data.
 u_char param; // Parameter data.
} OSISPECFLOWPARAM;
5.4. OSI Controls

5.4.1. Ioctls
The following commands are available:
Command				Semantics
SIO_OSI_X25_GET_RESET_DATA	This command will wait for an ISO 8208/X.25 reset to occur, and will return the the reset data associated with the reset. No input buffer is required. The two bytes of reset data will be copied to the output buffer. The WSAENOPROTOOPT error code is indicated for service providers that do not support X.25 resets.
SIO_OSI_X25_GENERATE_RESET	Generate an ISO 8208/X.25 reset. No output buffer is required, the two byes of reset data will be obtained from the input buffer. The WSAENOPROTOOPT error code is indicated for service providers that do not support X.25 resets.
SIO_OSI_X25_SEND_QUALIFIED	This command is used to indicate that the next message sent using one of the send(), or WSASend() functions will be sent as Qualified data. No buffers are required. It is not neccasary to call this function for subsequent sends of the same message where the MSG_PARTIAL flag has been used. The WSAENOPROTOOPT error code is indicated for service providers that do not support X.25 Qualified data.
SIO_OSI_X25_GET_QUALIFIED	This command will wait until the next message that will be received by the recv() or WSARecv() functions will be ISO 8208/X.25 Qualified data. This command will only complete once for each message received, even if the MSG_PARTIAL flag is returned. The WSAENOPROTOOPT error code is indicated for service providers that do not support X.25 Qualified data.
5.4.2. Socket Options
The following socket options are supported for setsockopt() and getsockopt(). The Type identifies the type of data addressed by optval.
level = SOL_SOCKET��Value�Type�Meaning��SO_EXPEDITED�BOOL�Negotiate expedited data.��SO_X25_CONFIRM_DELIVERY�BOOL�ISO 8208/X.25 Delivery Confirmation��

SO_EXPEDITED
This option is negotiated during connection establishment. The setsoctopt() function must be used before the connection is established to specify the proposed option. The getsockopt() function may be used after the circuit has been established to retrieve the final negotiated option. See ISO 8073 for further details.

SO_X25�_CONFIRM_DELIVERY
This option controls the state of the Delivery Confirmation bit (D-bit) for X.25 protocols. If the D-bit is set, end-to-end confirmation of data occurs. The SO_X25_CONFIRM_DELIVERY option may be used to change the state of the D-bit many times during the life of a connection.

5.5. OSI Function Specifics
5.5.1. Quality Of Service
The provider specific parameters in the Flow Spec are encoded in a Type/Length/Data format to enable multiple parameters to be provided. The OSISPECFLOWPARAM structure is used to encode the parameter.
The following parameter types are defined:
Parameter�Type�Meaning��OSI_PARAM_ID_X25_CALL_FACILITY�u_char[]�ISO 8208/X.25 call facilities.��
OSI_PARAM_ID_X25_CALL_FACILITY
This parameter specifies the ISO 8208/X.25 call facilities to be used. The format of the data is the same as is coded in an X.25 call request/call confirm packet. For further details see the X.25 specification.

5.6. OSI Header File
/* WS2OSI.H -- Winsock 2 Extensions for OSI protocols
 *
 * This file contains OSI specific information for use by
 * Winsock 2 compabable applications. Include this file below
 * WINSOCK.H to enable OSI features in your application.
 *
 * Rev 0.2, July 28, 1995
 */

#ifndef _WS2OSI_
#define _WS2OSI_

/*
 * Protocol values for ISO transport protocols.
 */

#define ISOPROTO_TP_CONS 25 // Transport over CONS
#define ISOPROTO_CLTP_CONS tba // Connectionless Transport
 // over CONS

#define ISOPROTO_TP4_CLNS 29 // Transport class 4 over CLNS
#define ISOPROTO_CLTP_CLNS 30 // Connectionless Transport
 // over CLNS

#define ISOPROTO_X25 32 // X.25
#define ISOPROTO_X25PVC tba // Permanent Virtual Circuit
#define ISOPROTO_X25SVC ISOPROTO_X25 // Switched Virtual Circuit

#define ISOPROTO_TP ISOPROTO_TP4_CLNS
#define ISOPROTO_CLTP ISOPROTO_CLTP_CLNS

#define ISOPROTO_TP0_TCP tba // Transport class 0 over TCP
 // (RFC1006)

/*
 * The maximum size of the transport address (tp_addr field of a
 * sockaddr_tp structure) is 64. The maximum size of the transport
 * address (tp_addr field of a sockaddr_ositp structure) is 126.
 */

#define ISO_MAX_ADDR_LENGTH 64
#define ISO_MAX_EXT_ADDR_LENGTH 126

/*
 * There are three types of ISO addresses, hierarchical,
 * extended-hierarchical and non-hierarchical. For hierarchical and
 * extended-hierarchical, the tp_addr field contains both the
 * transport selector and the NSAP. Extended-hierarchical addresses
 * also contain a Sub Network address, extended addressing for X.25,
 * and an option profile name.
 * For non-hierarchical addresses, tp_addr contains only the transport
 * address, which must be translated by the ISO TP4 transport provider
 * into the transport selector and network address.
 */

#define ISO_HIERARCHICAL 0
#define ISO_NON_HIERARCHICAL 1
#define ISO_EXTENDED_HIERARCHICAL 2

/*
 * The format of the address structure (sockaddr) to pass to Windows
 * Sockets APIs.
 *
 */

typedef struct sockaddr_tp {
 u_short tp_family; // Always AF_ISO
 u_short tp_addr_type; // ISO_HIERARCHICAL or
 // ISO_NON_HIERARCHICAL
 u_short tp_taddr_len; // Length of transport address, <= 52
 u_short tp_tsel_len; // Length of transport selector, <= 32
 // 0 if ISO_NON_HIERARCHICAL
 u_char tp_addr[ISO_MAX_ADDR_LENGTH];
} SOCKADDR_TP, *PSOCKADDR_TP, *LPSOCKADDR_TP;

#define ISO_SET_TP_ADDR(sa_tp, port, portlen, node, nodelen) \
 (sa_tp)->tp_family = AF_ISO; \
 (sa_tp)->tp_addr_type = ISO_HIERARCHICAL; \
 (sa_tp)->tp_tsel_len = (portlen); \
 (sa_tp)->tp_taddr_len = (portlen) + (nodelen); \
 memcpy(&(sa_tp)->tp_addr, (port), (portlen)); \
 memcpy(&(sa_tp)->tp_addr[portlen], (node), (nodelen));

typedef struct sockaddr_ositp {
 u_short tp_family; // Always AF_ISO
 u_short tp_addr_type; // ISO_EXTENDED_HIERARCHICAL
 u_short tp_tsel_len; // Length of transport selector, <= 32
 u_short tp_nsap_len; // Length of transport address, <= 20
 u_short tp_snet_len; // Sub Network address length, <= 18
 u_short tp_ext_addr_len; // Extended address length, <= 40
 u_short tp_optname_len; // Option profile name length, <= 16
 u_char tp_addr[ISO_MAX_EXT_ADDR_LENGTH];
} SOCKADDR_OSITP, *PSOCKADDR_OSITP, *LPSOCKADDR_OSITP;

#define ISO_SET_OSITP_ADDR(sa_tp, tsel, tsellen, nsap, nsaplen, \
 snpa, snpalen, extaddr, extaddrlen, \
 optname, optnamelen) { \
 u_char * paddr; \
 (sa_tp)->tp_family = AF_ISO; \
 (sa_tp)->tp_addr_type = ISO_EXTENDED_HIERARCHICAL; \
 (sa_tp)->tp_tsel_len = (tsellen); \
 (sa_tp)->tp_nsap_len = (nsaplen); \
 (sa_tp)->tp_snet_len = (snpalen); \
 (sa_tp)->tp_ext_addr_len = (extaddrlen); \
 (sa_tp)->tp_optname_len = (optnamelen); \
 memcpy(&(sa_tp)->tp_addr, (tsel), (tsellen)); \
 paddr = &(sa_tp)->tp_addr[tsellen]; \
 memcpy(paddr, (nsap), (nsaplen)); \
 paddr += (nsaplen); \
 memcpy(paddr, (snpa), (snpalen)); \
 paddr += (snpalen); \
 memcpy(paddr, (extaddr), (extaddrlen)); \
 paddr += (extaddrlen); \
 memcpy(paddr, (optname), (optnamelen)); \
 }

#define ISO_OSITP_ADDR_LEN(sa_tp) \
 (sa_tp)->tp_tsel_len + \
 (sa_tp)->tp_nsap_len + \
 (sa_tp)->tp_snet_len + \
 (sa_tp)->tp_ext_addr_len + \
 (sa_tp)->tp_optname_len

#endif // _WS2OSI_

�6. ATM-Specific Extensions
6.1. ATM Introduction
This section describes the Asynchronous Transfer Mode (ATM) specific extensions needed to support the native ATM services as exposed and specified in the ATM Forum User Network Interface (UNI) specification version 3.x (3.0 and 3.1). This document supports AAL type 5 (message mode) and user-defined AAL. Future versions of this document will support other types of AAL as well as UNI 4.0 after it’s finalized.

Address comments or questions regarding this material to:
		Charlie Tai
		Intel Architecture Labs
		charlie_tai@ccm.jf.intel.com

		April 30, 1996

	Fast Facts:
Protocol Name(s)�ATMPROTO_AAL5, ATMPROTO_AALUSER��Description�ATM AAL5 provides a transport service which is connection-oriented, message boundary preserved, and QOS guaranteed. ATMPROTO_AALUSER is a user-defined AAL.��Address Family�AF_ATM��Header File�WS2ATM.H��

6.2. ATM Overview
ATM is an emerging high-speed networking technology which is applicable to both LAN and WAN arenas. An ATM network simultaneously transports a wide variety of network traffic -- voice, data, image, and video. It provides users with a guaranteed quality of service on a per Virtual Channel (VC) basis.

6.3. ATM Data Structures
A new address family, AF_ATM, is introduced for native ATM services, and the corresponding “sockaddr” structure, sockaddr_atm, is defined below. To open a socket for native ATM services, parameters in socket() should contain “AF_ATM”, “SOCK_RAW”, and “ATMPROTO_AAL5” or “ATMPROTO_AALUSER”, respectively.

struct sockaddr_atm {
 u_short satm_family; /* address family should be AF_ATM */
 ATM_ADDRESS satm_number; /* ATM address */
 ATM_BLLI satm_blli; /* B-LLI */
 ATM_BHLI satm_bhli; /* B-HLI */
};

satm_family
Identifies the address family, which is AF_ATM in this case.
satm_number
Identifies the ATM address which could be either in E.164 or NSAP-style ATM End Systems Address format. See next section for more details about the ATM_ADDRESS structure. This field will be mapped to the Called Party Number IE(Information Element) if it is specified in bind()/WSPBind() for a listening socket, or in connect()/WSAConnect()/WSPConnect()/WSAJoinLeaf()/WSPJoinLeaf() for a connecting socket. It will be mapped to the Calling Party Number IE if specified in bind()/WSPBind() for a connecting socket.
satm_blli
Identifies the fields in the B-LLI Information Element which are used along with satm_bhli to identify an application. See the section below for more details about the ATM_BLLI structure. Note that the BLLI layer 2 information is treated as not present if its Layer2Protocol field contains “SAP_FIELD_ABSENT”, or wildcard if it contains “SAP_FIELD_ANY”. Similarly, the BLLI layer 3 information is treated as not present if its Layer3Protocol field contains “SAP_FIELD_ABSENT”, or wildcard if it contains “SAP_FIELD_ANY”.
satm_bhli
Identifies the fields in the B-HLI Information Element which are used along with satm_blli to identify an application. See the section below for more details about the ATM_BHLI structure. Note that satm_bhli is treated as not present if its HighLayerInfoType field contains “SAP_FIELD_ABSENT”, or wildcard if it contains “SAP_FIELD_ANY”.

For listening sockets, the sockaddr_atm structure is used in bind()/WSPBind() to register a Service Access Point (SAP) to receive incoming connection requests destined to this SAP. SAP registration is used to match against the SAP specified in an incoming connection request in order to determine which listening socket to receive this request. In current version of this specification, overlapping registration is not allowed. Overlapping registration is defined as having more than one registered SAP to potentially match the SAP specified in any incoming connection request. listen()/WSPListen() will return the error code WSAEADDRINUSE if the SAP associated with the listening socket overlaps with any currently registered SAPs in the system.

The fields in a SAP to be registered must contain either a valid value, or one of two special manifest constants: “SAP_FIELD_ABSENT”, or “SAP_FIELD_ANY”. “SAP_FIELD_ABSENT” simply means that this field is not presented as part of a SAP. “SAP_FIELD_ANY” means wildcarding. Note that the requirement of non-overlapping registration does not preclude wildcarding. For example, it is possible to have two registered SAPs which both contain “SAP_FIELD_ANY” in some fields and different values in other fields. Note that the called party ATM number is mandatory, thus the satm_number field cannot contain “SAP_FIELD_ABSENT”.

For connecting sockets, the sockaddr_atm structure is used to specify the destination SAP in connect()/WSAConnect()/WSPConnect() for point-to-point connections, and WSAJoinLeaf()/WSPJoinLeaf() for point-to-multipoint connections. The fields in the destination SAP of a connecting socket must contain either a valid value or “SAP_FIELD_ABSENT”, i.e., “SAP_FIELD_ANY” is not allowed. Furthermore, “SAP_FIELD_ABSENT” is not allowed for the satm_number field. The destination SAP is used to match against all the registered SAPs in the destination machine to determine who to forward this connection request to. If each and every field of the destination SAP of an incoming request either equals to the corresponding field of a registered SAP, or the corresponding field contains the “SAP_FIELD_ANY”, the listening socket associated with this registered SAP will receive the incoming connection request.

If bind()/WSPBind() is used on a connecting socket to specify the calling party ATM address, the satm_blli and satm_bhli fields should be ignored and the ones specified in connect()/WSAConnect()/WSPConnect() will be used.

6.3.1. The ATM_ADDRESS structure

/*
 * values used for AddressType in struct ATM_ADDRESS
 */
#define ATM_E164 0x01 /* E.164 addressing scheme */
#define ATM_NSAP 0x02 /* NSAP-style ATM Endsystem Address scheme */
#define ATM_AESA 0x02 /* NSAP-style ATM Endsystem Address scheme */

typedef struct {
 DWORD AddressType; /* E.164 or NSAP-style ATM Endsystem Address */
 DWORD NumofDigits; /* number of digits; */
 UCHAR Addr[20]; /* IA5 digits for E164, BCD encoding for NSAP */
 /* format as defined in the ATM Forum UNI 3.1 */
} ATM_ADDRESS;

If the use of the E.164 addressing plan is indicated, the number digits appear in the same order in which they would be entered on a numeric keypad; i.e., the number digit which would be entered first is located in addr[0]. Digits are coded in IA5 characters. Bit 8 is set to 0.

If the use of NSAP-style ATM Endsystem Address (AESA) is indicated, the address is coded using Binary Coded Decimal (BCD) as defined in the ATM Forum UNI 3.1. The NumofDigits field will be ignored in this case, and the NSAP-style address always contains 20 bytes.

A value of “SAP_FIELD_ANY” in AddressType indicates that the satm_number field is a wildcard. There are two more specialized wildcard values: “SAP_FIELD_ANY_AESA_SEL” and “SAP_FIELD_ANY_AESA_REST”. “SAP_FIELD_ANY_AESA_SEL” means that this is a NSAP-style ATM Endsystem Address and the selector octet is “wildcarded”. “SAP_FIELD_ANY_AESA_REST” means that this is a NSAP-style ATM Endsystem Address and all the octets except for the selector octet are “wildcarded”.

An address of all zeros indicates the wildcard address. A wildcard address specified in bind() followed by a listen() call means that the server will accept all incoming calls, regardless of the Called Party address associated with the call request.
6.3.2. The ATM_BLLI structure and associated manifest constants

/*
 * values used for Layer2Protocol in struct B-LLI
 */
#define BLLI_L2_ISO_1745 0x01 /* Basic mode ISO 1745 */
#define BLLI_L2_Q921 0x02 /* CCITT Rec. Q.921 */
#define BLLI_L2_X25L 0x06 /* CCITT Rec. X.25, link layer */
#define BLLI_L2_X25M 0x07 /* CCITT Rec. X.25, multilink */
#define BLLI_L2_ELAPB 0x08 /* Extended LAPB; for half duplex operation */
#define BLLI_L2_HDLC_NRM 0x09 /* HDLC NRM (ISO 4335) */
#define BLLI_L2_HDLC_ABM 0x0A /* HDLC ABM (ISO 4335) */
#define BLLI_L2_HDLC_ARM 0x0B /* HDLC ARM (ISO 4335) */
#define BLLI_L2_LLC 0x0C /* LAN logical link control (ISO 8802/2) */
#define BLLI_L2_X75 0x0D /* CCITT Rec. X.75, single link procedure */
#define BLLI_L2_Q922 0x0E /* CCITT Rec. Q.922 */
#define BLLI_L2_USER_SPECIFIED 0x10 /* User Specified */
#define BLLI_L2_ISO_7776 0x11 /* ISO 7776 DTE-DTE operation */

/*
 * values used for Layer3Protocol in struct B-LLI
 */
#define BLLI_L3_X25 0x06 /* CCITT Rec. X.25, packet layer */
#define BLLI_L3_ISO_8208 0x07 /* ISO/IEC 8208 (X.25 packet layer for DTE */
#define BLLI_L3_X223 0x08 /* X.223/ISO 8878 */
#define BLLI_L3_SIO_8473 0x09 /* ISO/IEC 8473 (OSI connectionless) */
#define BLLI_L3_T70 0x0A /* CCITT Rec. T.70 min. network layer */
#define BLLI_L3_ISO_TR9577 0x0B /* ISO/IEC TR 9577 Network Layer Protocol ID*/
#define BLLI_L3_USER_SPECIFIED 0x10 /* User Specified */

/*
 * values used for Layer3IPI in struct B-LLI
 */
#define BLLI_L3_IPI_SNAP 0x80 /* IEEE 802.1 SNAP identifier */
#define BLLI_L3_IPI_IP 0xCC /* Internet Protocol (IP) identifier */

typedef struct {
 DWORD Layer2Protocol; /* User information layer 2 protocol */
 DWORD Layer2UserSpecifiedProtocol; /* User specified layer 2 protocol information */
 DWORD Layer3Protocol; /* User information layer 3 protocol */
 DWORD Layer3UserSpecifiedProtocol; /* User specified layer 3 protocol information */
 DWORD Layer3IPI; /* ISO/IEC TR 9577 Initial Protocol Identifier */
 UCHAR SnapID[5]; /* SNAP ID consisting of OUI and PID */
} ATM_BLLI;

Layer2Protocol
Identifies the layer 2 protocol. Corresponds to the User information layer 2 protocol field in the B-LLI information element. A value of “SAP_FIELD_ABSENT” indicates that this field is not used, and a value of “SAP_FIELD_ANY” means wildcard.
Layer2UserSpecifiedProtocol
Identifies the user specified layer 2 protocol. Only used if the Layer2Protocol parameter is set to “BLLI_L2_USER_SPECIFIED”. The valid values range from 0 to 127. Corresponds to the User specified layer 2 protocol information field in the B-LLI information element.
Layer3Protocol
Identifies the layer 3 protocol. Corresponds to the User information layer 3 protocol field in the B-LLI information element. A value of “SAP_FIELD_ABSENT” indicates that this field is not used, and a value of “SAP_FIELD_ANY” means wildcard.
Layer3UserSpecifiedProtocol
Identifies the user specified layer 3 protocol. Only used if the Layer3Protocol parameter is set to “BLLI_L3_USER_SPECIFIED.” The valid values range from 0 to 127. Corresponds to the User specified layer 3 protocol information field in the B-LLI information element.
Layer3IPI
Identifies the layer 3 Initial Protocol Identifier. Only used if the Layer3Protocol parameter is set to “BLLI_L3_ISO_TR9577”. Corresponds to the ISO/IEC TR 9577 Initial Protocol Identifier field in the B-LLI information element.
SnapID
Identifies the 802.1 SNAP identifier. Only used if the Layer3Protocol parameter is set to “BLLI_L3_ISO_TR9577” and Layer3IPI is set to “BLLI_L3_IPI_SNAP”, indicating an IEEE 802.1 SNAP identifier. Corresponds to the OUI and PID fields in the B-LLI information element.
6.3.3. The ATM_BHLI structure and associated manifest constants

/*
 * values used for the HighLayerInfoType field in struct ATM_BHLI
 */
#define BHLI_ISO 0x00 /* ISO */
#define BHLI_UserSpecific 0x01 /* User Specific */
#define BHLI_HighLayerProfile 0x02 /* High layer profile (only in UNI3.0) */
#define BHLI_VendorSpecificAppId 0x03 /* Vendor-Specific Application ID */

typedef struct {
 DWORD HighLayerInfoType; /* High Layer Information Type */
 DWORD HighLayerInfoLength; /* number of bytes in HighLayerInfo */
 UCHAR HighLayerInfo[8]; /* the value dependent on the */
 /* HighLayerInfoType field */
} ATM_BHLI;

HighLayerInfoType
Identifies the high layer information type field in the B-LLI information element. Note that the type BHLI_HighLayerProfile has been eliminated in UNI 3.1. A value of “SAP_FIELD_ABSENT” indicates that B-HLI is not present, and a value of “SAP_FIELD_ANY” means wildcard.
HighLayerInfoLength
Identifies the number of bytes from 1 to 8 in the HighLayerInfo array. Valid values include 8 for the cases of BHLI_ISO and BHLI_UserSpecific, 4 for BHLI_HighLayerProfile, and 7 for BHLI_VendorSpecificAppId.
HighLayerInfo
Identifies the high layer information field in the B-LLI information element. In the case HighLayerInfoType being BHLI_VendorSpecificAppId, the first three bytes consist of a globally-administered Organizationally Unique Identifier (OUI)(as per IEEE standard 802-1990), followed by a four-byte application identifier, which is administered by the vendor identified by the OUI. Value for the case of BHLI_UserSpecific is user defined and requires bilateral agreement between two end users.
6.4. ATM Controls
ATM point-to-point and point-to-multipoint connection setup and teardown are natively supported by the WinSock 2 specification. In fact, WinSock 2 QOS spec and protocol-independent multipoint/multicast mechanisms were designed with ATM in mind, along with other protocols. See section 2.7 and appendix D of the WinSock 2 API specification for WinSock 2 QOS and multipoint support, respectively. Therefore, no ATM specific ioctls need to be introduced in this document.

6.5. ATM Function Specifics
Based on the taxonomy defined for WinSock 2 protocol-independent multipoint/multicast schemes, ATM falls into the category of “rooted data” and “rooted control” planes. (See WinSock 2 API specification, Appendix D for more information.) An application acting as the root would create c_root sockets and counterparts running on leaf nodes would utilize c_leaf sockets. The root application will use WSAJoinLeaf() to add new leaf nodes. The corresponding applications on the leaf nodes will have set their c_leaf sockets into the listening mode. WSAJoinLeaf() with a c_root socket specified will be mapped to the Q.2931 SETUP message (for the first leaf) or ADD PARTY message (for any subsequent leaves). Note that the QOS parameters specified in WSAJoinLeaf() for any subsequent leaves should be ignored per the ATM Forum UNI specification.

The leaf-initiated join is not part of the ATM UNI 3.1, but will be supported in the ATM UNI 4.0. Thus WSAJoinLeaf() with a c_leaf socket specified will be mapped to the appropriate ATM UNI 4.0 message.

The AAL Parameter and B-LLI negotiation is supported via the modification of the corresponding IEs in the lpSQOS parameter upon the invocation of the condition function specified in WSAAccept(). Note that only certain fields in those two IEs can be modified. See the ATM Forum UNI specification Appendix C and F for details.

6.6. ATM-specific QOS Extension
This section describes the protocol-specific QOS structure for ATM, which is contained in the ProviderSpecific.buf field of the QOS structure. Note that the use of this ATM-specific QOS structure is optional by WinSock 2 clients, and the ATM service provider is required to map the generic FLOWSPEC structure to appropriate Q.2931 Information Elements. However, if both the generic FLOWSPEC structure and ATM-specific QOS structure are specified, the value specified in the ATM-specific QOS structure should take precedence should there be any conflicts. See WinSock 2 API specification section 2.7 for more information about the QOS provisions and FLOWSPEC structure.

The protocol-specific QOS structure for ATM is a concatenation of Q.2931 Information Element (IE) structures, which are defined below. If an application omits an IE that UNI 3.x mandates, the service provider should insert a reasonable default value, taking the information in the FLOWSPEC structure into account if applicable.

The handling of repeated IEs is dependent on the IE itself. If an IE is repeated and it is one that is allowed to be repeated per ATM Forum UNI spec then the provider must handle it properly. In this case, order in the list determines preference order, with elements appearing earlier in the list being more preferred. If an IE is repeated and this is not allowed per ATM Forum UNI spec, the provider may either fail the request from the client (the preferred option) or use the last IE of that type found.

Each individual IE structure is formatted in the following fashion and identified by the IEType field:

typedef struct {
 Q2931_IE_TYPE IEType;
 ULONG IELength;
 UCHAR IE[1];
} Q2931_IE;

Legal values for the IEType field are defined below:

typedef enum {
 IE_AALParameters,
 IE_TrafficDescriptor,
 IE_BroadbandBearerCapability,
 IE_BHLI,
 IE_BLLI,
 IE_CalledPartyNumber,
 IE_CalledPartySubaddress,
 IE_CallingPartyNumber,
 IE_CallingPartySubaddress,
 IE_Cause,
 IE_QOSClass,
 IE_TransitNetworkSelection,
} Q2931_IE_TYPE;

The IE field is overlaid by a specific IE structure defined below, and the IELength field is the total length in bytes of the IE structure including the IEType and IELength fields. The semantics and legal values for each element of these IE structures are per ATM UNI 3.x specification. “SAP_FIELD_ABSENT” can be used for those elements which are optional for a given IE structure, per ATM UNI 3.x specification.
6.6.1. AAL Parameters

/*
 * manifest constants for the AALType field in struct AAL_PARAMETERS_IE
 */
typedef enum {
 AALTYPE_1 = 1, /* AAL 1 */
 AALTYPE_34 = 3, /* AAL 3/4 */
 AALTYPE_5 = 5, /* AAL 5 */
 AALTYPE_USER = 16 /* user-defined AAL */
} AAL_TYPE;

typedef struct { /* for UNI 3.0 */
 UCHAR Subtype;
 UCHAR CRBRate;
 USHORT Multiplier;
 UCHAR ClockRecoveryType;
 UCHAR ErrorCorrection;
 UCHAR StructuredDataTransfer;
 UCHAR PartiallyFilledCells;
} AAL1_PARAMETERS;

typedef struct { /* for UNI 3.1 */
 UCHAR Subtype;
 UCHAR CRBRate;
 USHORT Multiplier;
 UCHAR SourceClockRecoveryMethod;
 UCHAR ErrorCorrectionMethod;
 USHORT StructuredDataTransferBlocksize;
 UCHAR PartiallyFilledCellsMethod;
} AAL1_PARAMETERS;

typedef struct {
 USHORT ForwardMaxCPCSSDUSize;
 USHORT BackwardMaxCPCSSDUSize;
 USHORT MIDSize;
 UCHAR Mode; /* only available in UNI 3.0 */
 UCHAR SSCSType;
} AAL34_PARAMETERS;

/*
 * values used for the Mode field in struct AAL5_PARAMETERS
 */
#define AAL5_MODE_MESSAGE 0x01
#define AAL5_MODE_STREAMING 0x02

/*
 * values used for the SSCSType field in struct AAL5_PARAMETERS
 */
#define AAL5_SSCS_NULL 0x00
#define AAL5_SSCS_SSCOP_ASSURED 0x01
#define AAL5_SSCS_SSCOP_NON_ASSURED 0x02
#define AAL5_SSCS_FRAME_RELAY 0x04

typedef struct {
 ULONG ForwardMaxCPCSSDUSize;
 ULONG BackwardMaxCPCSSDUSize;
 UCHAR Mode; /* only available in UNI 3.0 */
 UCHAR SSCSType;
} AAL5_PARAMETERS;

typedef struct {
 ULONG UserDefined;
} AALUSER_PARAMETES;

typedef struct {
 AAL_TYPE AALType;
 union {
 AAL1_PARAMETERS AAL1Parameters;
 AAL34_PARAMETERS AAL34Parameters;
 AAL5_PARAMETERS AAL5Parameters;
 AALUSER_PARAMETERS AALUserParameters;
 } AALSpecificParameters;
} AAL_PARAMETERS_IE;
6.6.2. ATM Traffic Descriptor

typedef struct {
 ULONG PeakCellRate_CLP0;
 ULONG PeakCellRate_CLP01;
 ULONG SustainableCellRate_CLP0;
 ULONG SustainableCellRate_CLP01;
 ULONG MaxBurstSize_CLP0;
 ULONG MaxBurstSize_CLP01;
 BOOL Tagging;
} ATM_TD;

typedef struct {
 ATM_TD Forward;
 ATM_TD Backward;
 BOOL BestEffort;
} ATM_TRAFFIC_DESCRIPTOR_IE;
6.6.3. Broadband Bearer Capability

/*
 * values used for the BearerClass field in struct ATM_BROADBAND_BEARER_CAPABILITY_IE
 */
#define BCOB_A 0x00 /* Bearer class A */
#define BCOB_C 0x03 /* Bearer class C */
#define BCOB_X 0x10 /* Bearer class X */

/*
 * values used for the TrafficType field in struct ATM_BROADBAND_BEARER_CAPABILITY_IE
 */
#define TT_NOIND 0x00 /* No indication of traffic type */
#define TT_CBR 0x04 /* Constant bit rate */
#define TT_VBR 0x06 /* Variable bit rate */

/*
 * values used for the TimingRequirements field in struct ATM_BROADBAND_BEARER_CAPABILITY_IE
 */
#define TR_NOIND 0x00 /* No timing requirement indication */
#define TR_END_TO_END 0x01 /* End-to-end timing required */
#define TR_NO_END_TO_END 0x02 /* End-to-end timing not required */

/*
 * values used for the ClippingSusceptability field in struct ATM_BROADBAND_BEARER_CAPABILITY_IE
 */
#define CLIP_NOT 0x00 /* Not susceptible to clipping */
#define CLIP_SUS 0x20 /* Susceptible to clipping */

/*
 * values used for the UserPlaneConnectionConfig field in
 * struct ATM_BROADBAND_BEARER_CAPABILITY_IE
 */
#define UP_P2P 0x00 /* Point-to-point connection */
#define UP_P2MP 0x01 /* Point-to-multipoint connection */

typedef struct {
 UCHAR BearerClass;
 UCHAR TrafficType;
 UCHAR TimingRequirements;
 UCHAR ClippingSusceptability;
 UCHAR UserPlaneConnectionConfig;
} ATM_BROADBAND_BEARER_CAPABILITY_IE;
6.6.4. Broadband High Layer Information

typedef ATM_BHLI ATM_BHLI_IE;
6.6.5. Broadband Lower Layer Information

/*
 * values used for the Layer2Mode field in struct ATM_BLLI_IE
 */
#define BLLI_L2_MODE_NORMAL 0x40
#define BLLI_L2_MODE_EXT 0x80

/*
 * values used for the Layer3Mode field in struct ATM_BLLI_IE
 */
#define BLLI_L3_MODE_NORMAL 0x40
#define BLLI_L3_MODE_EXT 0x80

/*
 * values used for the Layer3DefaultPacketSize field in struct ATM_BLLI_IE
 */
#define BLLI_L3_PACKET_16 0x04
#define BLLI_L3_PACKET_32 0x05
#define BLLI_L3_PACKET_64 0x06
#define BLLI_L3_PACKET_128 0x07
#define BLLI_L3_PACKET_256 0x08
#define BLLI_L3_PACKET_512 0x09
#define BLLI_L3_PACKET_1024 0x0A
#define BLLI_L3_PACKET_2048 0x0B
#define BLLI_L3_PACKET_4096 0x0C

typedef struct {
 DWORD Layer2Protocol; /* User information layer 2 protocol */
 UCHAR Layer2Mode;
 UCHAR Layer2WindowSize;
 DWORD Layer2UserSpecifiedProtocol; /* User specified layer 2 protocol information */
 DWORD Layer3Protocol; /* User information layer 3 protocol */
 UCHAR Layer3Mode;
 UCHAR Layer3DefaultPacketSize;
 UCHAR Layer3PacketWindowSize;
 DWORD Layer3UserSpecifiedProtocol; /* User specified layer 3 protocol information */
 DWORD Layer3IPI; /* ISO/IEC TR 9577 Initial Protocol Identifier */
 UCHAR SnapID[5]; /* SNAP ID consisting of OUI and PID */
} ATM_BLLI_IE;
6.6.6. Called Party Number

typedef ATM_ADDRESS ATM_CALLED_PARTY_NUMBER_IE;
6.6.7. Called Party Subaddress

typedef ATM_ADDRESS ATM_CALLED_PARTY_SUBADDRESS_IE;
6.6.8. Calling Party Number

/*
 * values used for the Presentation_Indication field in
 * struct ATM_CALLING_PARTY_NUMBER_IE
 */
#define PI_ALLOWED 0x00
#define PI_RESTRICTED 0x40
#define PI_NUMBER_NOT_AVAILABLE 0x80

/*
 * values used for the Screening_Indicator field in
 * struct ATM_CALLING_PARTY_NUMBER_IE
 */
#define SI_USER_NOT_SCREENED 0x00
#define SI_USER_PASSED 0x01
#define SI_USER_FAILED 0x02
#define SI_NETWORK 0x03

typedef struct {
 ATM_ADDRESS ATM_Number;
 UCHAR Presentation_Indication;
 UCHAR Screening_Indicator;
} ATM_CALLING_PARTY_NUMBER_IE;
6.6.9. Calling Party Subaddress

typedef ATM_ADDRESS ATM_CALLING_PARTY_SUBADDRESS_IE;
6.6.10. Quality of Service Parameter

/*
 * values used for the QOSClassForward and QOSClassBackward
 * field in struct ATM_QOS_CLASS_IE
 */
#define QOS_CLASS0 0x00
#define QOS_CLASS1 0x01
#define QOS_CLASS2 0x02
#define QOS_CLASS3 0x03
#define QOS_CLASS4 0x04

typedef struct {
 UCHAR QOSClassForward;
 UCHAR QOSClassBackward;
} ATM_QOS_CLASS_IE;
6.6.11. Transit Network Selection

/*
 * values used for the TypeOfNetworkId field in struct ATM_TRANSIT_NETWORK_SELECTION_IE
 */
#define TNS_TYPE_NATIONAL 0x40

/*
 * values used for the NetworkIdPlan field in struct ATM_TRANSIT_NETWORK_SELECTION_IE
 */
#define TNS_PLAN_CARRIER_ID_CODE 0x01

typedef struct {
 UCHAR TypeOfNetworkId;
 UCHAR NetworkIdPlan;
 UCHAR NetworkIdLength;
 UCHAR NetworkId[1];
} ATM_TRANSIT_NETWORK_SELECTION_IE;
6.6.12. Cause

In addition to all the IEs described above, which could be specified in the ATM-specific QOS structure while calling WSAConnect(), there is a Cause IE which can only be used during the call release. Upon disconnecting, WinSock 2 applications can optionally specify this IE as the disconnect data in WSASendDisconnect(). The remote party can retrieve this IE via WSARecvDisconnect() after receiving the FD_CLOSE notification.

/*
 * values used for the Location field in struct ATM_CAUSE_IE
 */
#define CAUSE_LOC_USER 0x00
#define CAUSE_LOC_PRIVATE_LOCAL 0x01
#define CAUSE_LOC_PUBLIC_LOCAL 0x02
#define CAUSE_LOC_TRANSIT_NETWORK 0x03
#define CAUSE_LOC_PUBLIC_REMOTE 0x04
#define CAUSE_LOC_PRIVATE_REMOTE 0x05
#define CAUSE_LOC_INTERNATIONAL_NETWORK 0x06
#define CAUSE_LOC_BEYOND_INTERWORKING 0x0A

/*
 * values used for the Cause field in struct ATM_CAUSE_IE
 */
#define CAUSE_UNALLOCATED_NUMBER 0x01
#define CAUSE_NO_ROUTE_TO_TRANSIT_NETWORK 0x02
#define CAUSE_NO_ROUTE_TO_DESTINATION 0x03
#define CAUSE_VPI_VCI_UNACCEPTABLE 0x0A
#define CAUSE_NORMAL_CALL_CLEARING 0x10
#define CAUSE_USER_BUSY 0x11
#define CAUSE_NO_USER_RESPONDING 0x12
#define CAUSE_CALL_REJECTED 0x15
#define CAUSE_NUMBER_CHANGED 0x16
#define CAUSE_USER_REJECTS_CLIR 0x17
#define CAUSE_DESTINATION_OUT_OF_ORDER 0x1B
#define CAUSE_INVALID_NUMBER_FORMAT 0x1C
#define CAUSE_STATUS_ENQUIRY_RESPONSE 0x1E
#define CAUSE_NORMAL_UNSPECIFIED 0x1F
#define CAUSE_VPI_VCI_UNAVAILABLE 0x23
#define CAUSE_NETWORK_OUT_OF_ORDER 0x26
#define CAUSE_TEMPORARY_FAILURE 0x29
#define CAUSE_ACCESS_INFORMAION_DISCARDED 0x2B
#define CAUSE_NO_VPI_VCI_AVAILABLE 0x2D
#define CAUSE_RESOURCE_UNAVAILABLE 0x2F
#define CAUSE_QOS_UNAVAILABLE 0x31
#define CAUSE_USER_CELL_RATE_UNAVAILABLE 0x33
#define CAUSE_BEARER_CAPABILITY_UNAUTHORIZED 0x39
#define CAUSE_BEARER_CAPABILITY_UNAVAILABLE 0x3A
#define CAUSE_OPTION_UNAVAILABLE 0x3F
#define CAUSE_BEARER_CAPABILITY_UNIMPLEMENTED 0x41
#define CAUSE_UNSUPPORTED_TRAFFIC_PARAMETERS 0x49
#define CAUSE_INVALID_CALL_REFERENCE 0x51
#define CAUSE_CHANNEL_NONEXISTENT 0x52
#define CAUSE_INCOMPATIBLE_DESTINATION 0x58
#define CAUSE_INVALID_ENDPOINT_REFERENCE 0x59
#define CAUSE_INVALID_TRANSIT_NETWORK_SELECTION 0x5B
#define CAUSE_TOO_MANY_PENDING_ADD_PARTY 0x5C
#define CAUSE_AAL_PARAMETERS_UNSUPPORTED 0x5D
#define CAUSE_MANDATORY_IE_MISSING 0x60
#define CAUSE_UNIMPLEMENTED_MESSAGE_TYPE 0x61
#define CAUSE_UNIMPLEMENTED_IE 0x63
#define CAUSE_INVALID_IE_CONTENTS 0x64
#define CAUSE_INVALID_STATE_FOR_MESSAGE 0x65
#define CAUSE_RECOVERY_ON_TIMEOUT 0x66
#define CAUSE_INCORRECT_MESSAGE_LENGTH 0x68
#define CAUSE_PROTOCOL_ERROR 0x6F

/*
 * values used for the Condition portion of the Diagnostics field
 * in struct ATM_CAUSE_IE, for certain Cause values
 */
#define CAUSE_COND_UNKNOWN 0x00
#define CAUSE_COND_PERMANENT 0x01
#define CAUSE_COND_TRANSIENT 0x02

/*
 * values used for the Rejection Reason portion of the Diagnostics field
 * in struct ATM_CAUSE_IE, for certain Cause values
 */
#define CAUSE_REASON_USER 0x00
#define CAUSE_REASON_IE_MISSING 0x04
#define CAUSE_REASON_IE_INSUFFICIENT 0x08

/*
 * values used for the P-U flag of the Diagnostics field
 * in struct ATM_CAUSE_IE, for certain Cause values
 */
#define CAUSE_PU_PROVIDER 0x00
#define CAUSE_PU_USER 0x08

/*
 * values used for the N-A flag of the Diagnostics field
 * in struct ATM_CAUSE_IE, for certain Cause values
 */
#define CAUSE_NA_NORMAL 0x00
#define CAUSE_NA_ABNORMAL 0x04

typedef struct {
 UCHAR Location;
 UCHAR Cause;
 UCHAR DiagnosticsLength;
 UCHAR Diagnostics[4];
} ATM_CAUSE_IE;

6.7. ATM Header File

#ifndef _WS2ATM_H_
#define _WS2ATM_H_

#pragma pack(1)

#define ATMPROTO_AALUSER 0x00 /* User-defined AAL */
#define ATMPROTO_AAL1 0x01 /* AAL 1 */
#define ATMPROTO_AAL2 0x02 /* AAL 2 */
#define ATMPROTO_AAL34 0x03 /* AAL 3/4 */
#define ATMPROTO_AAL5 0x05 /* AAL 5 */

#define SAP_FIELD_ABSENT 0xFFFFFFFE
#define SAP_FIELD_ANY 0xFFFFFFFF
#define SAP_FIELD_ANY_AESA_SEL 0xFFFFFFFA
#define SAP_FIELD_ANY_AESA_REST 0xFFFFFFFB

/*
 * values used for AddressType in struct ATM_ADDRESS
 */
#define ATM_E164 0x01 /* E.164 addressing scheme */
#define ATM_NSAP 0x02 /* NSAP-style ATM Endsystem Address scheme */
#define ATM_AESA 0x02 /* NSAP-style ATM Endsystem Address scheme */

typedef struct {
 DWORD AddressType; /* E.164 or NSAP-style ATM Endsystem Address */
 DWORD NumofDigits; /* number of digits; */
 UCHAR Addr[20]; /* IA5 digits for E164, BCD encoding for NSAP */
 /* format as defined in the ATM Forum UNI 3.1 */
} ATM_ADDRESS;

/*
 * values used for Layer2Protocol in B-LLI
 */
#define BLLI_L2_ISO_1745 0x01 /* Basic mode ISO 1745 */
#define BLLI_L2_Q921 0x02 /* CCITT Rec. Q.921 */
#define BLLI_L2_X25L 0x06 /* CCITT Rec. X.25, link layer */
#define BLLI_L2_X25M 0x07 /* CCITT Rec. X.25, multilink */
#define BLLI_L2_ELAPB 0x08 /* Extended LAPB; for half duplex operation */
#define BLLI_L2_HDLC_NRM 0x09 /* HDLC NRM (ISO 4335) */
#define BLLI_L2_HDLC_ABM 0x0A /* HDLC ABM (ISO 4335) */
#define BLLI_L2_HDLC_ARM 0x0B /* HDLC ARM (ISO 4335) */
#define BLLI_L2_LLC 0x0C /* LAN logical link control (ISO 8802/2) */
#define BLLI_L2_X75 0x0D /* CCITT Rec. X.75, single link procedure */
#define BLLI_L2_Q922 0x0E /* CCITT Rec. Q.922 */
#define BLLI_L2_USER_SPECIFIED 0x10 /* User Specified */
#define BLLI_L2_ISO_7776 0x11 /* ISO 7776 DTE-DTE operation */

/*
 * values used for Layer3Protocol in B-LLI
 */
#define BLLI_L3_X25 0x06 /* CCITT Rec. X.25, packet layer */
#define BLLI_L3_ISO_8208 0x07 /* ISO/IEC 8208 (X.25 packet layer for DTE */
#define BLLI_L3_X223 0x08 /* X.223/ISO 8878 */
#define BLLI_L3_SIO_8473 0x09 /* ISO/IEC 8473 (OSI connectionless) */
#define BLLI_L3_T70 0x0A /* CCITT Rec. T.70 min. network layer */
#define BLLI_L3_ISO_TR9577 0x0B /* ISO/IEC TR 9577 Network Layer Protocol ID*/
#define BLLI_L3_USER_SPECIFIED 0x10 /* User Specified */

/*
 * values used for Layer3IPI in B-LLI
 */
#define BLLI_L3_IPI_SNAP 0x80 /* IEEE 802.1 SNAP identifier */
#define BLLI_L3_IPI_IP 0xCC /* Internet Protocol (IP) identifier */

typedef struct {
 DWORD Layer2Protocol; /* User information layer 2 protocol */
 DWORD Layer2UserSpecifiedProtocol; /* User specified layer 2 protocol information */
 DWORD Layer3Protocol; /* User information layer 3 protocol */
 DWORD Layer3UserSpecifiedProtocol; /* User specified layer 3 protocol information */
 DWORD Layer3IPI; /* ISO/IEC TR 9577 Initial Protocol Identifier */
 UCHAR SnapID[5]; /* SNAP ID consisting of OUI and PID */
} ATM_BLLI;

/*
 * values used for the HighLayerInfoType field in ATM_BHLI
 */
#define BHLI_ISO 0x00 /* ISO */
#define BHLI_UserSpecific 0x01 /* User Specific */
#define BHLI_HighLayerProfile 0x02 /* High layer profile (only in UNI3.0) */
#define BHLI_VendorSpecificAppId 0x03 /* Vendor-Specific Application ID */

typedef struct {
 DWORD HighLayerInfoType; /* High Layer Information Type */
 DWORD HighLayerInfoLength; /* number of bytes in HighLayerInfo */
 UCHAR HighLayerInfo[8]; /* the value dependent on the */
 /* HighLayerInfoType field */
} ATM_BHLI;

struct sockaddr_atm {
 u_short satm_family; /* address family should be AF_ATM */
 ATM_ADDRESS satm_number; /* ATM address */
 ATM_BLLI satm_blli; /* B-LLI */
 ATM_BHLI satm_bhli; /* B-HLI */
};

typedef enum {
 IE_AALParameters,
 IE_TrafficDescriptor,
 IE_BroadbandBearerCapability,
 IE_BHLI,
 IE_BLLI,
 IE_CalledPartyNumber,
 IE_CalledPartySubaddress,
 IE_CallingPartyNumber,
 IE_CallingPartySubaddress,
 IE_Cause,
 IE_QOSClass,
 IE_TransitNetworkSelection,
} Q2931_IE_TYPE;

typedef struct {
 Q2931_IE_TYPE IEType;
 ULONG IELength;
 UCHAR IE[1];
} Q2931_IE;

/*
 * manifest constants for the AALType field in struct AAL_PARAMETERS_IE
 */
typedef enum {
 AALTYPE_1 = 1, /* AAL 1 */
 AALTYPE_34 = 3, /* AAL 3/4 */
 AALTYPE_5 = 5, /* AAL 5 */
 AALTYPE_USER = 16, /* user-defined AAL */
} AAL_TYPE;

typedef struct { /* for UNI 3.0 */
 UCHAR Subtype;
 UCHAR CRBRate;
 USHORT Multiplier;
 UCHAR ClockRecoveryType;
 UCHAR ErrorCorrection;
 UCHAR StructuredDataTransfer;
 UCHAR PartiallyFilledCells;
} AAL1_PARAMETERS;

typedef struct { /* for UNI 3.1 */
 UCHAR Subtype;
 UCHAR CRBRate;
 USHORT Multiplier;
 UCHAR SourceClockRecoveryMethod;
 UCHAR ErrorCorrectionMethod;
 USHORT StructuredDataTransferBlocksize;
 UCHAR PartiallyFilledCellsMethod;
} AAL1_PARAMETERS;

typedef struct {
 USHORT ForwardMaxCPCSSDUSize;
 USHORT BackwardMaxCPCSSDUSize;
 USHORT MIDSize;
 UCHAR Mode; /* only available in UNI 3.0 */
 UCHAR SSCSType;
} AAL34_PARAMETERS;

/*
 * values used for the Mode field in struct AAL5_PARAMETERS
 */
#define AAL5_MODE_MESSAGE 0x01
#define AAL5_MODE_STREAMING 0x02

/*
 * values used for the SSCSType field in struct AAL5_PARAMETERS
 */
#define AAL5_SSCS_NULL 0x00
#define AAL5_SSCS_SSCOP_ASSURED 0x01
#define AAL5_SSCS_SSCOP_NON_ASSURED 0x02
#define AAL5_SSCS_FRAME_RELAY 0x04

typedef struct {
 ULONG ForwardMaxCPCSSDUSize;
 ULONG BackwardMaxCPCSSDUSize;
 UCHAR Mode; /* only available in UNI 3.0 */
 UCHAR SSCSType;
} AAL5_PARAMETERS;

typedef struct {
 ULONG UserDefined;
} AALUSER_PARAMETERS;

typedef struct {
 AAL_TYPE AALType;
 union {
 AAL1_PARAMETERS AAL1Parameters;
 AAL34_PARAMETERS AAL34Parameters;
 AAL5_PARAMETERS AAL5Parameters;
 AALUSER_PARAMETERS AALUserParameters;
 } AALSpecificParameters;
} AAL_PARAMETERS_IE;

typedef struct {
 ULONG PeakCellRate_CLP0;
 ULONG PeakCellRate_CLP01;
 ULONG SustainableCellRate_CLP0;
 ULONG SustainableCellRate_CLP01;
 ULONG MaxBurstSize_CLP0;
 ULONG MaxBurstSize_CLP01;
 BOOL Tagging;
} ATM_TD;

typedef struct {
 ATM_TD Forward;
 ATM_TD Backward;
 BOOL BestEffort;
} ATM_TRAFFIC_DESCRIPTOR_IE;

/*
 * values used for the BearerClass field in struct ATM_BROADBAND_BEARER_CAPABILITY_IE
 */
#define BCOB_A 0x01 /* Bearer class A */
#define BCOB_C 0x03 /* Bearer class C */
#define BCOB_X 0x10 /* Bearer class X */

/*
 * values used for the TrafficType field in struct ATM_BROADBAND_BEARER_CAPABILITY_IE
 */
#define TT_NOIND 0x00 /* No indication of traffic type */
#define TT_CBR 0x04 /* Constant bit rate */
#define TT_VBR 0x06 /* Variable bit rate */

/*
 * values used for the TimingRequirements field in struct ATM_BROADBAND_BEARER_CAPABILITY_IE
 */
#define TR_NOIND 0x00 /* No timing requirement indication */
#define TR_END_TO_END 0x01 /* End-to-end timing required */
#define TR_NO_END_TO_END 0x02 /* End-to-end timing not required */

/*
 * values used for the ClippingSusceptability field in struct ATM_BROADBAND_BEARER_CAPABILITY_IE
 */
#define CLIP_NOT 0x00 /* Not susceptible to clipping */
#define CLIP_SUS 0x20 /* Susceptible to clipping */

/*
 * values used for the UserPlaneConnectionConfig field in
 * struct ATM_BROADBAND_BEARER_CAPABILITY_IE
 */
#define UP_P2P 0x00 /* Point-to-point connection */
#define UP_P2MP 0x01 /* Point-to-multipoint connection */

typedef struct {
 UCHAR BearerClass;
 UCHAR TrafficType;
 UCHAR TimingRequirements;
 UCHAR ClippingSusceptability;
 UCHAR UserPlaneConnectionConfig;
} ATM_BROADBAND_BEARER_CAPABILITY_IE;

typedef ATM_BHLI ATM_BHLI_IE;

/*
 * values used for the Layer2Mode field in struct ATM_BLLI_IE
 */
#define BLLI_L2_MODE_NORMAL 0x40
#define BLLI_L2_MODE_EXT 0x80

/*
 * values used for the Layer3Mode field in struct ATM_BLLI_IE
 */
#define BLLI_L3_MODE_NORMAL 0x40
#define BLLI_L3_MODE_EXT 0x80

/*
 * values used for the Layer3DefaultPacketSize field in struct ATM_BLLI_IE
 */
#define BLLI_L3_PACKET_16 0x04
#define BLLI_L3_PACKET_32 0x05
#define BLLI_L3_PACKET_64 0x06
#define BLLI_L3_PACKET_128 0x07
#define BLLI_L3_PACKET_256 0x08
#define BLLI_L3_PACKET_512 0x09
#define BLLI_L3_PACKET_1024 0x0A
#define BLLI_L3_PACKET_2048 0x0B
#define BLLI_L3_PACKET_4096 0x0C

typedef struct {
 DWORD Layer2Protocol; /* User information layer 2 protocol */
 UCHAR Layer2Mode;
 UCHAR Layer2WindowSize;
 DWORD Layer2UserSpecifiedProtocol; /* User specified layer 2 protocol information */
 DWORD Layer3Protocol; /* User information layer 3 protocol */
 UCHAR Layer3Mode;
 UCHAR Layer3DefaultPacketSize;
 UCHAR Layer3PacketWindowSize;
 DWORD Layer3UserSpecifiedProtocol; /* User specified layer 3 protocol information */
 DWORD Layer3IPI; /* ISO/IEC TR 9577 Initial Protocol Identifier */
 UCHAR SnapID[5]; /* SNAP ID consisting of OUI and PID */
} ATM_BLLI_IE;

typedef ATM_ADDRESS ATM_CALLED_PARTY_NUMBER_IE;

typedef ATM_ADDRESS ATM_CALLED_PARTY_SUBADDRESS_IE;

/*
 * values used for the Presentation_Indication field in
 * struct ATM_CALLING_PARTY_NUMBER_IE
 */
#define PI_ALLOWED 0x00
#define PI_RESTRICTED 0x40
#define PI_NUMBER_NOT_AVAILABLE 0x80

/*
 * values used for the Screening_Indicator field in
 * struct ATM_CALLING_PARTY_NUMBER_IE
 */
#define SI_USER_NOT_SCREENED 0x00
#define SI_USER_PASSED 0x01
#define SI_USER_FAILED 0x02
#define SI_NETWORK 0x03

typedef struct {
 ATM_ADDRESS ATM_Number;
 UCHAR Presentation_Indication;
 UCHAR Screening_Indicator;
} ATM_CALLING_PARTY_NUMBER_IE;

typedef ATM_ADDRESS ATM_CALLING_PARTY_SUBADDRESS_IE;

/*
 * values used for the Location field in struct ATM_CAUSE_IE
 */
#define CAUSE_LOC_USER 0x00
#define CAUSE_LOC_PRIVATE_LOCAL 0x01
#define CAUSE_LOC_PUBLIC_LOCAL 0x02
#define CAUSE_LOC_TRANSIT_NETWORK 0x03
#define CAUSE_LOC_PUBLIC_REMOTE 0x04
#define CAUSE_LOC_PRIVATE_REMOTE 0x05
#define CAUSE_LOC_INTERNATIONAL_NETWORK 0x06
#define CAUSE_LOC_BEYOND_INTERWORKING 0x0A

/*
 * values used for the Cause field in struct ATM_CAUSE_IE
 */
#define CAUSE_UNALLOCATED_NUMBER 0x01
#define CAUSE_NO_ROUTE_TO_TRANSIT_NETWORK 0x02
#define CAUSE_NO_ROUTE_TO_DESTINATION 0x03
#define CAUSE_VPI_VCI_UNACCEPTABLE 0x0A
#define CAUSE_NORMAL_CALL_CLEARING 0x10
#define CAUSE_USER_BUSY 0x11
#define CAUSE_NO_USER_RESPONDING 0x12
#define CAUSE_CALL_REJECTED 0x15
#define CAUSE_NUMBER_CHANGED 0x16
#define CAUSE_USER_REJECTS_CLIR 0x17
#define CAUSE_DESTINATION_OUT_OF_ORDER 0x1B
#define CAUSE_INVALID_NUMBER_FORMAT 0x1C
#define CAUSE_STATUS_ENQUIRY_RESPONSE 0x1E
#define CAUSE_NORMAL_UNSPECIFIED 0x1F
#define CAUSE_VPI_VCI_UNAVAILABLE 0x23
#define CAUSE_NETWORK_OUT_OF_ORDER 0x26
#define CAUSE_TEMPORARY_FAILURE 0x29
#define CAUSE_ACCESS_INFORMAION_DISCARDED 0x2B
#define CAUSE_NO_VPI_VCI_AVAILABLE 0x2D
#define CAUSE_RESOURCE_UNAVAILABLE 0x2F
#define CAUSE_QOS_UNAVAILABLE 0x31
#define CAUSE_USER_CELL_RATE_UNAVAILABLE 0x33
#define CAUSE_BEARER_CAPABILITY_UNAUTHORIZED 0x39
#define CAUSE_BEARER_CAPABILITY_UNAVAILABLE 0x3A
#define CAUSE_OPTION_UNAVAILABLE 0x3F
#define CAUSE_BEARER_CAPABILITY_UNIMPLEMENTED 0x41
#define CAUSE_UNSUPPORTED_TRAFFIC_PARAMETERS 0x49
#define CAUSE_INVALID_CALL_REFERENCE 0x51
#define CAUSE_CHANNEL_NONEXISTENT 0x52
#define CAUSE_INCOMPATIBLE_DESTINATION 0x58
#define CAUSE_INVALID_ENDPOINT_REFERENCE 0x59
#define CAUSE_INVALID_TRANSIT_NETWORK_SELECTION 0x5B
#define CAUSE_TOO_MANY_PENDING_ADD_PARTY 0x5C
#define CAUSE_AAL_PARAMETERS_UNSUPPORTED 0x5D
#define CAUSE_MANDATORY_IE_MISSING 0x60
#define CAUSE_UNIMPLEMENTED_MESSAGE_TYPE 0x61
#define CAUSE_UNIMPLEMENTED_IE 0x63
#define CAUSE_INVALID_IE_CONTENTS 0x64
#define CAUSE_INVALID_STATE_FOR_MESSAGE 0x65
#define CAUSE_RECOVERY_ON_TIMEOUT 0x66
#define CAUSE_INCORRECT_MESSAGE_LENGTH 0x68
#define CAUSE_PROTOCOL_ERROR 0x6F

/*
 * values used for the Condition portion of the Diagnostics field
 * in struct ATM_CAUSE_IE, for certain Cause values
 */
#define CAUSE_COND_UNKNOWN 0x00
#define CAUSE_COND_PERMANENT 0x01
#define CAUSE_COND_TRANSIENT 0x02

/*
 * values used for the Rejection Reason portion of the Diagnostics field
 * in struct ATM_CAUSE_IE, for certain Cause values
 */
#define CAUSE_REASON_USER 0x00
#define CAUSE_REASON_IE_MISSING 0x04
#define CAUSE_REASON_IE_INSUFFICIENT 0x08

/*
 * values used for the P-U flag of the Diagnostics field
 * in struct ATM_CAUSE_IE, for certain Cause values
 */
#define CAUSE_PU_PROVIDER 0x00
#define CAUSE_PU_USER 0x08

/*
 * values used for the N-A flag of the Diagnostics field
 * in struct ATM_CAUSE_IE, for certain Cause values
 */
#define CAUSE_NA_NORMAL 0x00
#define CAUSE_NA_ABNORMAL 0x04

typedef struct {
 UCHAR Location;
 UCHAR Cause;
 UCHAR DiagnosticsLength;
 UCHAR Diagnostics[4];
} ATM_CAUSE_IE;

/*
 * values used for the QOSClassForward and QOSClassBackward
 * field in struct ATM_QOS_CLASS_IE
 */
#define QOS_CLASS0 0x00
#define QOS_CLASS1 0x01
#define QOS_CLASS2 0x02
#define QOS_CLASS3 0x03
#define QOS_CLASS4 0x04

typedef struct {
 UCHAR QOSClassForward;
 UCHAR QOSClassBackward;
} ATM_QOS_CLASS_IE;

/*
 * values used for the TypeOfNetworkId field in struct ATM_TRANSIT_NETWORK_SELECTION_IE
 */
#define TNS_TYPE_NATIONAL 0x40

/*
 * values used for the NetworkIdPlan field in struct ATM_TRANSIT_NETWORK_SELECTION_IE
 */
#define TNS_PLAN_CARRIER_ID_CODE 0x01

typedef struct {
 UCHAR TypeOfNetworkId;
 UCHAR NetworkIdPlan;
 UCHAR NetworkIdLength;
 UCHAR NetworkId[1];
} ATM_TRANSIT_NETWORK_SELECTION_IE;

#pragma pack()

#endif /* _WS2ATM_H_ */

�7. SSL Security Protocol
7.1. SSL Introduction
This section covers extensions to WinSock 2 that are specific to the Secure Sockets Layer security protocol (SSL). It also describes aspects of base WinSock 2 functions that require special consideration or which may exhibit unique behavior when using SSL.

Address comments or questions regarding this material to:
		Elgamal Taher
		Netscape Corp.
		taher@netscape.com

		30 May 1995

Network security has become a major consideration in recent times as the scope of networks and their uses continues to grow and expand into the commercial world. Application users and developers want to be assured that their data is private and that they are communicating with the party they intended to. The Secure Sockets Layer (SSL) protocol is intended to address these needs.
WinSock 2’s WOSA architecture allows any number of underlying transport protocols to be accessed by applications. While SSL is not itself a complete transport protocol, it is designed to work in conjunction with existing transports that offer reliable, connection-oriented services. From an application’s perspective, the addition of SSL causes additional entries to be returned in the WSAEnumProtocols() function. These additional entries are identical to the underlying transport protocol entries (e.g. TCP or SPX), but are distinguished by having SSL indicated in the iSecurityScheme field of the PROTOCOL_INFO struct. Having discovered and selected a transport that offers SSL security, the application creates sockets and sends data over them in exactly the same manner as is done for the underlying transport without security. Through this mechanism application developers are able to take advantage of security provisions without having to make extensive modifications to their applications.
7.2. SSL Overview
This section describes how an applications developer can discover and effectively utilize transports that have been enhanced with the SSL security protocol. We begin by providing some background information which is necessary to explain the goals and techniques which are integral in any security discussion.
7.2.1.Public-Key Cryptography
For many years, private encrypted messages were communicated between two or more users using keys that are shared among them. Under this model, any two users wishing to communicate privately need to establish a “secure” or protected channel of some kind to share the secret key. This traditional model for cryptography introduces many complications from key management point of view since each user would have to keep numerous secret keys to be used for communicating with all the needed users.
In 1977, the concept of public-key cryptography was invented where two parties can communicate privately without the need to share any secrets. Each party establishes a key-pair, one private key and one public key. The public key, as the name implies, is published to all nodes on a network and is used to encrypt messages to the node. The private key performs the inverse operation and enables the receiving node to decrypt the messages. The private key never leaves the node that “owns” it. This model for private communications simplifies the key management problem to a great extent.
Public-key cryptography can also be used to exchange a secret key between two (or more) nodes without having to communicate any secrets. But, perhaps the most prevalent application for public-key cryptography is a technology referred to as “digital signatures.” This technology allows nodes to sign documents or messages using the private key allowing all other nodes to verify the signature using the published public key. The mathematics of public-key cryptosystems make it possible for one node to create a signature for a particular message, allowing others to verify the signature while ensuring that “forging” someone else’s signature is computationally infeasible.
The only issue left with the above model for public-key cryptography is the following question:
	Why should one believe that a published public key actually belongs to a given user?
This question can be answered using the notion of a digital certificate. The digital certificate of a user is a message composed of the name and other infomation about the user together with the user’s public key. This entire message is digitally signed by an authority that is known to many users and that has the capacity of verifying the identity of a user. A user generates a public-private keypair, safely stores the private key and takes the public key to an authority with proof of identity. The authority generates a digital signature for the user and hands back a digital certificate. The certificate can then be published in a directory or attached to any message being signed by the user. Any other user can then verify the signature of the user using the attached certificate while ensuring the authenticity of the user’s identity.
The RSA public-key cryptosystem is the most commonly used in commercial applications and systems. It provides capability for both encryption/decryption operations as well as digital signature and verification operations. The X.509 standard defines a format for digital certificates using the RSA algorithm which SSL supports.
It is also important to note that for performance reasons, public key encryption and decryption is usually constrainted to signature applications and encryption of short data blocks such as data encryption keys. Traditional symmetric-key encryption algorithms are usually used for bulk data encryption. SSL supports a variety of symmetric-key algorithms including the DES standard and exportable versions of RC2 and RC4. Refer to the SSL specification document for a complete list of the supported encryption algorithms.

7.2.2.The Secure Sockets Layer Protocol (SSL)
SSL operates by layering a security protocol on top of an underlying reliable connection-oriented transport protocol. The combined protocol establishes a connection with a remote host and then performs a handshake between the two nodes to establish a secure session. Once the security handshake is complete, the protocol then encrypts and authenticates data sent from the local host and decrypts and verifies data received from the remote host. This will all be done in a manner transparent to the application utilizing the SSL protocol.
Using this technology, an application developer can quickly convert a client or a server to provide a variety of security functions. By virtue of this technology being accessible using the WinSock 2.0 API, an end-user application developer can easily provide very strong security within an application.The application can simply enumerate the protocols supported by the system and if any of them provides SSL security, security can be enabled on arbitrary sockets.
7.2.3.Discovering and Using SSL-Enabled Transports
As mentioned previously, application programmers use the standard WinSock 2 protocol enumeration method to discover SSL-enabled transports. Invoking WSAEnumProtocols() returns a buffer filled with PROTOCOL_INFO structs, with one such struct for each available transport protocol. Transports which have been enhanced with SSL capabilities have this indicated in the iSecurityScheme field of their PROTOCOL_INFO struct. This field will contain the value:
	SECURITY_PROTOCOL_SSL

7.2.4.Using SSL-Enabled Sockets
SSL works with the underlying transport protocol in such a manner as to be largerly invisible to the application. Socket creation, connection establishment and data transfers are all invoked in the usual manner. The SSL protocol injects extra steps in the connection sequence so that its security handshake can occur, but this does not require any overt action on the application’s part. Similarly, send and receive operations cause data to be encrypted and decrypted in a transparent fashion.
7.3. SSL Data Structures
	SSL data structures are introduced along with the ioctl’s that they are used in.

7.4. SSL Controls
All SSL controls make use of the WSAIoctl() function, with a set of dwIoControlCode values that are specific to SSL. The values for the dwIoControlCode are defined as follows:

/*
** This value is the SSL protocol tag and WSAIoctl dwIoControlCode
** "T" value.
*/
#define _SO_SSL				((2L << 27) | (0x73L << 16))

/*
** These values are used to form the WSAIoctl dwIoControlCode
** "Code" value.
*/
#define _SO_SSL_FLAGS			0x01
#define _SO_SSL_CIPHERS			0x02
#define _SO_SSL_CLIENT			0x03
#define _SO_SSL_SERVER			0x04
#define _SO_SSL_AUTH_CERT_HOOK	0x08
#define _SO_SSL_RSA_ENCRYPT_HOOK	0x10
#define _SO_SSL_RSA_DECRYPT_HOOK	0x20

/*
** Actual SSL Ioctl commands
*/
#define SO_SSL_GET_FLAGS (IOC_IN |_SO_SSL|_SO_SSL_FLAGS)
#define SO_SSL_SET_FLAGS (IOC_OUT|_SO_SSL|_SO_SSL_FLAGS)
#define SO_SSL_GET_CIPHERS (IOC_IN |_SO_SSL|_SO_SSL_CIPHERS)
#define SO_SSL_SET_CIPHERS (IOC_OUT|_SO_SSL|_SO_SSL_CIPHERS)
#define SO_SSL_GET_CLIENT (IOC_IN |_SO_SSL|_SO_SSL_CLIENT)
#define SO_SSL_SET_CLIENT (IOC_OUT|_SO_SSL|_SO_SSL_CLIENT)
#define SO_SSL_GET_SERVER (IOC_IN |_SO_SSL|_SO_SSL_SERVER)
#define SO_SSL_SET_SERVER (IOC_OUT|_SO_SSL|_SO_SSL_SERVER)
#define SO_SSL_GET_AUTH_CERT_HOOK �	(IOC_IN |_SO_SSL|_SO_SSL_AUTH_CERT_HOOK)
#define SO_SSL_SET_AUTH_CERT_HOOK 	(IOC_OUT|_SO_SSL|_SO_SSL_AUTH_CERT_HOOK)
#define SO_SSL_GET_RSA_ENCRYPT_HOOK �	(IOC_IN |_SO_SSL|_SO_SSL_RSA_ENCRYPT_HOOK)
#define SO_SSL_SET_RSA_ENCRYPT_HOOK 	(IOC_OUT|_SO_SSL|_SO_SSL_RSA_ENCRYPT_HOOK)
#define SO_SSL_GET_RSA_DECRYPT_HOOK �	(IOC_IN |_SO_SSL|_SO_SSL_RSA_DECRYPT_HOOK)
#define SO_SSL_SET_RSA_DECRYPT_HOOK 	(IOC_OUT|_SO_SSL|_SO_SSL_RSA_DECRYPT_HOOK)

7.4.1.SO_SSL_GET_FLAGS/SO_SSL_SET_FLAGS
This WSAIoctl command is used to get/set the SSL flags associated with the socket. The lpvInBuffer points to a "WORD". The following flags exist:

 #define SO_SSL_ENABLE	0x0001
 #define SO_SSL_SERVER 	0x0002
 #define SO_SSL_AUTH_CLIENT 	0x0004
 #define SO_SSL_ACCEPT_WEAK 	0x0008

The flags are set using the SO_SSL_SET_FLAGS command, while the status of the flags can be queried using the SO_SSL_GET_FLAGS command.
Setting the SO_SSL_ENABLE flag enables security on the socket. If this is done after a connection has already been established, then the SSL handshake protocol is performed before the next byte of data is transfered.
The SO_SSL_SERVER flag, when set, indicates that the socket is to be configured for server operation. In addition, the SO_SSL_AUTH_CLIENT flag indicates that the server will authenticate the client.
The SO_SSL_ACCEPT_WEAK flag, when set, instructs SSL to accept weakly checked certificates.
Strong certificate checking means that the SSL implementation has contacted the certificate issuer online and verified the validity of the certificate. Weak certificate checking means that no online check was performed.
7.4.2.SO_SSL_GET_CIPHERS/SO_SSL_SET_CIPHERS
This WSAIoctl command is used to get/set the privacy ciphers that SSL should attempt to use for the socket. The lpvInBuffer points to the following structure:

 struct sslcipheropts {
 int n;
 char specs[3]; /* 3 bytes per n */
 };

The value n specifies the number of ciphers (not the number of bytes of ciphers) and specs is an array of 3 byte values that contain the cipher specs. When SO_SSL_GET_CIPHERS is used, the structure is filled in with the ciphers that are supported by the socket. If WSAIoctl with SO_SSL_GET_CIPHERS is called before any changes are made to the socket via SO_SSL_SET_CIPHERS then the value returned will represent the underlying implementations abilities. If SO_SSL_SET_CIPHERS is used then the values are used as a replacement for the built in ciphers for the given socket.
For SO_SSL_SET_CIPHERS, the error EINVAL will be returned if a cipher is specified that is not supported by the implementation. The legal values for the ciphers specs are defined in the SSL specification document.
7.4.3.SO_SSL_GET_CLIENT/SO_SSL_SET_CLIENT
This WSAIoctl command is used to get/set the client data that SSL will use for the socket. The lpvInBuffe points to the following structure:

 struct sslclientopts {
 char *cert;
 int certlen;
 time_t sidtimeout;
 int32 sidentries;
 char *siddir;
 };

cert and certlen are used to define the clients certificate. sidtimeout specifies the number of seconds that session-id's are allowed to live. sidentries defines the maximum number of entries to keep in the session-id cache. siddir defines the location of the temporary file used to hold the session-id cache when a temporary file is needed by the implementation.
The SSL implementation requires and guarantees MT-safe access to the session-id cache.
7.4.4.SO_SSL_GET_SERVER/SO_SSL_SET_SERVER
This WSAIoctl command is used to get/set the server data that SSL will use for the socket. The lpvInBuffer points to the following structure:

 struct sslserveropts {
 char *cert;
 int certlen;
 time_t sidtimeout;
 int32 sidentries;
 char *siddir;
 };

cert and certlen are used to define the servers certificate. sidtimeout specifies the number of seconds that session-id's are allowed to live. sidentries defines the maximum number of entries to keep in the session-id cache. siddir defines the location of the temporary file used to hold the session-id cache when a temporary file is needed by the implementation.
The SSL implementation requires and guarantees MT-safe access to the session-id cache.
7.4.5.SO_SSL_GET_AUTH_CERT_HOOK/SO_SSL_SET_AUTH_CERT_HOOK
This WSAIoctl command is used to get/set the certificate authentication hook that SSL will use for the socket. The lpvInBuffer points to the following structure:

 struct sslauthcertopts {
 int type;
 int (*func)(void *arg, char *cert, int len);
 void *arg;
 };

The SSL implementation will invoke the function with the supplied argument when a certificate arrives (either for server or client authentication). Only certificates of type will be authenticated using this function (see the SSL specification for a list of the supported certificate types). If no function exists for a given certificate type presented to the SSL implementation, the connection/handshake attempt will fail. Otherwise, the function authenticates the certificate and returns one of the following values:

 #define SSL_ACH_OK 	0
 #define SSL_ACH_WEAK_OK 	1
 #define SSL_ACH_SHORT_DATA 	2
 #define SSL_ACH_LONG_DATA 	3
 #define SSL_ACH_BAD_DATA 	4
 #define SSL_ACH_BAD_SIG 	5
 #define SSL_ACH_CERT_EXPIRED 	6

The SSL_ACH_OK value is returned when the certificate is good (the signature and validity periods are acceptable) and when the certificate has been verified through some external mechanism (for example, an online check with a certificate authority). The SSL_ACH_WEAK_OK value is returned under the same circumstances, except that no online verification has been performed.
The remaining values represent the kind of error conditions that might occur during certificate verification. SSL_ACH_BAD_DATA is returned when the data presented is improperly formatted. SSL_ACH_BAD_SIG is returned if the signature check fails. SSL_ACH_CERT_EXPIRED is returned if the certificate has expired.
7.4.6.SO_SSL_RSA_ENCRYPT_HOOK
 This WSAIoctl command is used to get/set the RSA encryption hook that SSL will use for the socket. The lpvInBuffer points to the following structure:

 struct sslrsaencrypthook {
 int (*func)(void *arg, int blockType, char *dest, int *destlen,
	char *src, int srclen);
 void *arg;
 };

This hook is used when the SSL implementation requires an RSA private or public key encryption. The blockType determines if the operation is a private or public key operation (only block types 0x01 and 0x02 are used by SSL; see PKCS#1 for more information). The dest and destlen values are used to return the encryption results. destlen is an input/output parameter with the input value defining the maximum storage area available at dest, and the output value containing the actual stored length of the encryption results. The src and srclen values define the input data. The following values are returned by the hook:

 #define SSL_REH_OK 	0
 #define SSL_REH_BAD_TYPE 	1
 #define SSL_REH_BAD_LEN 	2

SSL_REH_OK is returned if the encryption succeded. SSL_REH_BAD_TYPE is returned if the blockType value is unacceptable. SSL_REH_BAD_LEN is returned if the srclen is too large to be encrypted in a single encryption, or if the dstlen value is too small to hold the encryption results.

7.4.7.SO_SSL_RSA_DECRYPT_HOOK
This WSAIoctl command is used to get/set the RSA decryption hook that SSL will use for the socket. The lpvInBuffer points to the following structure:

 struct sslrsadecrypthook {
 int (*func)(void *arg, int blockType, char *dest, int *destlen,
	char *src, int srclen);
 void *arg;
 };

This hook is used when the SSL implementation requires an RSA private or public key decryption. The blockType determines if the operation is a private or public key operation (only block types 0x01 and 0x02 are used by SSL; see PKCS#1 for more information). The dest and destlen values are used to return the decryption results. destlen is an input/output parameter with the input value defining the maximum storage area available at dest, and the output value containing the actual stored length of the decryption results. The src and srclen values define the input data. The following values are returned by the hook:

 #define SSL_RDH_OK 	0
 #define SSL_RDH_BAD_TYPE 	1
 #define SSL_RDH_BAD_LEN	2

SSL_RDH_OK is returned if the decryption succeded. SSL_RDH_BAD_TYPE is returned if the blockType value is unacceptable. SSL_RDH_BAD_LEN is returned if the srclen doesn't match the key's modulus length, or if the dstlen value is too small to hold the decryption results.
7.5. SSL Function Specifics
	<Describe the recommended sequence for using SSL controls and standard WinSock calls to establish a secure connection>
7.6. SSL Header File
	<To be supplied>
�8. Information for Wireless Networking

Editors Note: The WinSock 2 wireless group is currently re-evaluating the planned definition of the NetDev device control API as a means to meet the requirements of wireless-aware applications. Other alternatives such as Desktop Management Interface (DMI) are under active consideration. The material which appeared here in the previous edition of this Annex has been elided until such time as these discussions produce a clear direction.

This section covers extensions to WinSock 2 that are specific to the use of wireless networks. It also describes aspects of base WinSock 2 functions that require special consideration or which may exhibit unique behavior when using such networks.

Address comments or questions regarding this material to:
		Dale Buchholz
		Motorola
		drbuchholz@mot.com

�9.Winsock/TAPI Integration

Editors Note: After extensive consultations between experts on both WinSock and TAPI, a general consensus has emerged that networking applications can best meet their telephony needs by utilizing the Remote Network Access (also known as Remote Access Services) facilities of Windows ™ instead of directly accessing Windows Telephony API. Therefore, the material which appeared here in previous versions of the Annex has been elided.

This section describes mechanisms for using the Windows Sockets interface in conjunction with the Windows Telephony interface (TAPI). It was prepared by the WinSock Forum’s Connection Oriented Media functionality group.

Address comments or questions regarding this material to:
		Charlie Tai
		Intel Architecture Labs
		charlie_tai@ccm.jf.intel.com

		18 April 1995

�10. RSVP

10.1. Introduction

This section covers extensions to WinSock 2 that are specific to RSVP protocol. These extensions are needed to allow applications to request an enhanced quality-of-service (QoS) for their data flows using the RSVP protocol. The document assumes that the reader is familiar with the RSVP protocol as defined in
the RSVP version 1 specification (Internet draft draft-ietf-rsvp-spec-08 available from ftp://www.isi.edu/internet-drafts/draft-ietf-rsvp-spec-08.ps).

Address comments or questions regarding this material to:
		Raj Yavatkar
		Intel Corporation
		yavatkar@ibeam.intel.com

	Fast Facts:
Protocol Name(s)�RSVP (ReSerVation setup Protocol)��Description�RSVP is a signaling or network control protocol that
allows applications to reserve network resources for simplex, unicast/multicast data flows.��Address Family�AF_INET��Header File�WS2RSVP.H��
10.2. RSVP Overview

RSVP protocol version 1, an IETF proposed standard, is a resource reservation setup protocol designed for an integrated services Internet. It provides support for reservation of resources for simplex, multicast or unicast data flows. An application uses the RSVP protocol to identify a data flow and to request a specific quality of service (QoS) from the network.

RSVP is a simplex protocol (i.e., it reserves resources in one direction) and the receiver(s) of a data flow are responsible for the initiation of resource reservation. RSVP operates on top of the Internet Protocol (IPv4 or IPv6) and is a control protocol similar to ICMP and routing protocols. RSVP is identified as a separate protocol (IP protocol id 46) within the AF_INET domain.

10.3. RSVP Reservation Model

Under RSVP, requests for reservation are handled separately from the data transfer. Thus, an application establishes a data flow using an AF_INET socket (datagram or stream) in a conventional way and uses the data socket for transferring data over a unicast or multicast flow. In addition, for multicast applications, the application must specify appropriate options for the data socket to join/leave a multicast group. All the resource reservation transactions for a data flow must, however, be carried out using a separate, non-blocking RSVP socket (a SOCK_DGRAM socket with protocol id IPPROTO_RSVP)�. All data packets addressed to the same destination belong to the same RSVP session, where the destination is defined by an IP destination (unicast or multicast) address, IP protocol identifier (i.e., UDP or TCP), and a port number. A given session may have several senders and, in the case of a multicast session, may also have multiple receivers; a sender or a receiver in a session is identified by an IP address and a port number.

Under RSVP, resource reservation requests are made by the data receivers. A reservation request contains a flowspec together with a filterspec. The flowspec specifies the desired QoS and the filterspec specifies which packets are to receive the specified QoS (e.g., based on the identity of a sender of data packets).

10.4. RSVP Data Structures

The data structures used in conjunction with WSAIoctl() call are defined in WS2RSVP.H (included at the end of the annex). These data structures describe the formats for session addresses, flowspecs, and filterspecs.
10.5. RSVP Controls
Due to the asynchronous nature of interaction between sender(s) and receivers in a RSVP session, all the RSVP calls are performed over the RSVP socket in a non-blocking mode. The RSVP API consists of a set of RSVP-specific control opcodes (dwIoControlCode parameter) specified as part of WSAIoctl() or WSPIoctl() calls over the RSVP socket as described below. It should be noted that an application may use a single RSVP socket to perform RSVP-related operations for multiple sessions and it need not open a separate RSVP socket for each data socket.

The soft-state nature of RSVP reservations inside the network requires end-systems to periodically generate refresh messages (PATH and RESERVE) and these messages can trigger errors or status notifications from the network at any time during a session. An application is notified of such status notifications and other changes in traffic or QoS specifications via FD_QOS event understood by WSAEventSelect and WSAAsyncSelect calls.

10.5.1. Ioctls
 	The following table describes RSVP-specific control codes and their meaning in the WSAIoctl()/WSPIoctl() call. The parameters lpOverlapped and lpCompletionRoutine are ignored in all the calls. An application must ensure that the lpvOutBuffer parameter contains address of the output buffer of appropriate size depending on the call. On successful return from the WSAIoctl() call, lpvOutBuffer is ignored unless specified otherwise in the following table. In case of an error in the WSAIoctl call, error-specific information is returned using the RSVP_ERROR structure in the output buffer lpvOutBuffer. In the case of retrieve and query_ QOS calls, the output buffer passed should be of size RSVP_RETURN_SIZE (defined in rsvp.h).
	
			
dwIoControlCode
�lpvInBuffer contents�lpvOutBuffer�Meaning��SIO_RSVP_REGISTER�REGISTER_DATA object�If error, contains
RSVP_ERROR object. �Create a RSVP session.��SIO_RSVP_SENDER
�SENDER_DATA object�If error, contains
RSVP_ERROR object.�Specify a sender’s Tpsec and other characteristics.��SIO_RSVP_RESERVE
�RESERVE_DATA object�If error, contains
RSVP_ERROR object.�Request resource reservations in a session.��SIO_RSVP_REL_SENDER�REL_SENDER_DATA object
�If error, contains
RSVP_ERROR object.�Cease being a sender.��SIO_RSVP_REL_RESERVE�REL_RESERVE_DATA object�If error, contains
RSVP_ERROR object.�Tear down reservation for a session.��SIO_RSVP_RETRIEVE
�None�RSVP_RETURN object on success and RSVP_ERROR object if error�Obtain currently active Tspec(s) or flowpsecs in a session or retrieve information about errors in a session. ��SIO_RSVP_�QUERY_ QOS�QUERY_ QOS_DATA object�if successful then RSVP_ QOSLIST object else RSVP_ERROR object. �Obtain the current flowspec(s) for a session.��

	

RSVP_REGISTER
An RSVP sender or receiver must register with RSVP to create a RSVP session before it can make any QoS-related requests for the session. As part of the call, an application must indicate whether it wishes to be a sender or a receiver or both.

RSVP_SENDER
A sender uses the call to specify its traffic specifications (Tspec). The sender of a data flow is identified by its source address (IP address and port number binding in its data socket) and must be specified as a parameter. Other optional parameters include a policy object and an IP TTL (Time To Live) scope for the data packets.

RSVP_RESERVE
	A receiver initiates resource reservation(s) using this call. In case of a multi-homed host, the 	receiver may specify the interface address over which the requested reservation needs to be made. 	In the case of shared explicit and fixed filter style of reservations, several flow descriptors (one 	per reservation) may be supplied. An optional parameter includes a policy object.

RSVP_REL_SENDER
	A sender uses the call to leave a session.

RSVP_REL_RECEIVER
	A receiver uses this call to tear down one or more reservations for the session. For example, a 	receiver can tear down its reservations over a particular interface (host address), or tear down a 	particular reservation based on a filter specification.

RSVP_RETRIEVE
	An application makes this call when it receives a FD_QOS event notification. FD_QOS event is 	signaled when events such as receipt of new traffic specifications, errors in reservation, or changes 	in installed flow specifications have occurred. An application passes a pointer to RSVP_RETURN 	structure in outBuffer argument for the call to retrieve the cause of the event and more details about 	the event. The RSVP SP returns the relevant information as part of a RSVP_RETURN structure. 	RSVP_RETURN structure identifies the type of event and provide event-specific information (see 	the data structure definition in the header file). When the call is made, it is possible that more than 	one event notification is pending for the session. In that case, RSVP SP returns information about 	one event at a time and the application should make repeated retrieve calls to retrieve information 	about each event. The retrieve call returns WSAEWOULDBLOCK if no more event notifications 	are pending.

	Information returned in a RSVP_RETURN structure may contain pointers to descriptors allocated 	by RSVP SP; these pointers point to areas separately allocated per session (and per socket) and 	are valid only until the next RSVP-specific ioctl call is made for the session. An application must 	be careful in using this information and must copy it to its own data area if it intends to use it 	beyond a single retrieve call.

RSVP_QUERY_ QOS
	The call is used to retrieve flow specifications (i.e., Tspecs and Rspecs) for one or more current 	senders in a session. Application passes a pointer to the RSVP_ QOSLIST structure in the 	argument outBuffer to retrieve the information. If number of filter specifications supplied (noFilts 	parameter) is zero in the Query_ QOS_DATA argument, the call returns the flow descriptors for all 	the current senders. Otherwise, the flow descriptors that match the specified filterspecs are 	returned. As in the case of the retrieve call, the RSVP_ QOSLIST returned in OutBuffer may 	contain pointers to descriptors allocated by SP and such pointers are valid only until the next 	RSVP-specific ioctl call is made for the session.

��10.6. Policy Object

	To allow policy-based input to the admission control process, RSVP assumes a policy component at each node. As input to the policy-based admission decision, RSVP messages may carry a policy object that includes information such as user credentials, account numbers, quotas, and so on. An application may pass a policy object as an optional argument to the RSVP_SENDER and RSVP_RESERVE calls.

10.7. RSVP Status Notifications

� 	An RSVP application can expect to receive the following status notifications in an asynchronous manner. It should be noted that these status notifications should not be treated as fatal errors. Instead, they should be viewed as advisory messages about the state of the reservation. For instance, a reservation error may simply indicate that the reservation you requested could not be installed (resulting in best effort service) and repeating the request with different parameter values may install the reservation.

ResvErr - notification to a receiver is generated when a RESV request fails inside the network typically due to an admission control failure.
PathErr - notification to a sender is generated in case of an error in propagation or installation of a PATH message from the sender.
PathTear - notification arrives at a receiver when a sender initiates a teardown or a router on the path initiates a teardown as a result of state timeout.
Confirm - notification arrives at a receiver in response to its reservation request. The notification is not necessarily a confirmation that the requested reservation is installed successfully at all the routers along the path of a reservation. Instead, it only indicates that the reservation request successfully reached some router along the path and was not rejected at the point when the conformation was sent.
PathChange - a receiver is notified when new traffic specifications arrive from a sender.
ResvChange - a receiver is notified when a previously installed reservation changes due to merging of multiple reservations from different receivers.

10.8. RSVP Header File

/*	
**	WS2RSVP.H - WinSock2 Extension for RSVP protocol
**
**	This file contains RSVP specific information for use
**	by WinSock2 compatible applications.
**
*/

///
//
// $Workfile: ws2rsvp.h $
// $Revision: 1.0 $
//
//
// DESCRIPTION:
// The API header file
//
//
#ifndef _W2RSVPAPI
#define _W2RSVPAPI

#ifndef _WINSOCK2SPI
#include <w2spi.h>
#endif

// RSVP protocol specific number
#define IPPROTO_RSVP 		0x2e

// Protocol specific commands for WSAIoctl()
#define SIO_RSVP_REGISTER		0xd02e0001
#define SIO_RSVP_SENDER		0xd02e0002
#define SIO_RSVP_RESERVE 		0xd02e0003
#define SIO_RSVP_REL_SENDER 	0xd02e0004
#define SIO_RSVP_REL_RESERVE	0xd02e0005
#define SIO_RSVP_RETRIEVE 		0xd02e0006
#define SIO_RSVP_QUERY_ QOS 	0xd02e0007	

// IP version 4 addr
typedef struct tag_AddrIPv4
{
	struct in_addr 		addr;
	USHORT		srcport;
} ADDR_IPv4;

// Sender Template	Strcuture
typedef struct tag_tmpl
{
	ADDR_IPV4		tmpl;
}RSVP_TEMPLATE;

// Filter Spec Structure
typedef struct tag_rsvpFilt
{
 	ADDR_IPv4		ipv4Filt;
} RSVP_FILTERSPEC;

// Session structure
typedef struct tag_sess
{
 	struct in_addr		addr;
 USHORT			destPort;
 BYTE	 			protId;
} RSVP_SESSION;

// Policy structure
typedef struct tag_policy
{
 	char 			polType[256];
}RSVP_POLICY;

// FLOWSPEC and QoS are defined in winsock2.h
#define RSVP_FLOWSPEC 	 QoS

//Tspec strcuture
typedef struct tag_tspec
{
	FLOWSPEC		options;
	int32			minPoliced;
	int32			maxPktSize;
} RSVP_TSPEC;

//Rspec strcuture
typedef struct tag_rspec
{
	FLOWSPEC		options;
	int32			slackTerm;
} RSVP_RSPEC;

// Adspec structure
typedef struct tag_adspec
{
 int				gLevel;
 int32				errTermC;
 int32				errTermD;
 int				clLevel;				
} RSVP_ADSPEC;

// Flowdesc	Structure
typedef struct tag_flowdesc
{
 RSVP_FLOWSPEC 		flow;
 RSVP_POLICY 		policy;
 int 				numFilts;
 RSVP_FILTERSPEC 		FiltsList[];
}RSVP_FLOWDESC;

// Structure to be used while calling WSAIoctl()
// with SIO_RSVP_REGISTER
typedef struct tag_register
{
 RSVP_SESSION 		sess;
 USHORT			regopt;
}REGISTER_DATA;

 #define RSVP_SENDER 	0x01
 #define RSVP_RECEIVER 	0x02
 #define RSVP_SENRECV 	0x03

// Structure to be used while calling WSAIoctl()
// with SIO_RSVP_SENDER as command
typedef struct tag_sender
{
 RSVP_SESSION 		sess;
 struct in_addr 			hostAddr;
 USHORT			hostPort;
 RSVP_TSPEC 			tspec;
 RSVP_POLICY 		policy;		//Optional
 int 				dataTTL;	//Optional
}SENDER_DATA;

// Structure to be used while calling WSAIoctl()
// with SIO_RSVP_RESERVE as command
typedef struct tag_reserve
{

 RSVP_SESSION 		sess;
 struct in_addr 			hostAddr;	//Optional
 RSVP_POLICY			policy; 	//Optional
 int 				style;
 int 				numFds;		
 RSVP_FLOWDESC 		fdList[];	// Required if style is SE, FF
}RESERVE_DATA;

// Structure to be used while calling WSAIoctl()
// with SIO_RSVP_RELEASE as command
typedef struct tag_relsender
{
 RSVP_SESSION 		sess;
 RSVP_TEMPLATE		tmpl;
} REL_SENDER_DATA;

// Structure to be used while calling WSAIoctl()
// with SIO_RSVP_RELEASE as command
typedef struct tag_relreserve
{
 RSVP_SESSION 		sess;
 struct in_addr 			hostAddr;	//Optional
 int 				style;
 int 				numFilts;
 RSVP_FILTERSPEC 		filtList[];
} REL_RESERVE_DATA;

// Structure to be used while calling WSAIoctl()
// with SIO_RSVP_QUERY_ QOS as command
typedef struct tag_queryQOS
{
 RSVP_SESSION 		sess;
 int 				numFilts	; //Optional, if NULL, all filterspecs
 RSVP_FILTERSPEC 		filtList[];	//for the session are returned
} QUERY_ QOS_DATA;

// Error Structure
typedef struct tag_error
{
 RSVP_SESSION 		sess;
 int 				errCode;

}RSVP_ERROR;

#define RSVP_RETURN_SIZE (sizeof(RSVP_ERROR))

// Return Structure. Used by service provider
// to return information to the application. This could be information about a
// path, path err,path tear, resv err, resv change
typedef struct tag_return
{
	int 			infoType;
	union
 {
 RSVP_SNDDESC 		*rsdesc; // for a path or path tear
 RSVP_PATHERR 		rpatherr;
 RSVP_RESVERR 		*rresverr;
 RSVP_FLOWDESC 		*rresvchg;
 }
} RSVP_RETURN;

// Sender Descriptor structure
typedef struct tag_snddesc
{
 RSVP_SESSION 		sess;
 RSVP_TMPL	 		tmpl;
 RSVP_TSPEC			tspec;
 RSVP_ADSPEC			adspec;
} RSVP_SNDDESC;

typedef struct tag_patherr
{
 BYTE 				ecode;
 int 				evalue;
 ADDR_IPv4 			enodeadr;
 RSVP_TMPL 			esnd;
 RSVP_POLICY 			epolicy;
}RSVP_PATHERR;

typedef struct tag_resverr
{
 BYTE 				ecode;
 int 				evalue;
 ADDR_IPv4 			enodeadr;
 RSVP_FLOWDESC 		rfds;
}RSVP_RESVERR;

// QOS List Structure
typedef struct taq_QOSlist
{
 int 				numFds;
 RSVP_FLOWDESC 		*fdList;
}RSVP_ QOSLIST;

// Error Codes.
#define RS_OK 		 	01
#define RS_ADM_DELAY	02
#define RS_ADM_BW 	03
#define RS_ADM_SERC 	04
#define RS_ADM_SERU 	05
#define RS_ADM_UNR 	06
#define RS_POLICY_CRED 	07
#define RS_POLICY_LAR 	08
#define RS_POLICY_QUOTA 	09
#define RS_POLICY_PREMPT 	10
#define RS_PATH		11
#define RS_SENDER	 	12
#define RS_AMB		13
#define RS_FILT		 	14
#define RS_STYLE	 	15
#define RS_DSTP		16
#define RS_SRCP		17
#define RS_MISS_SESS 	18
#define RS_MISS_STMPL 	19
#define RS_MISS_STSPEC 	20
#define RS_MISS_STYLE 	21
#define RS_MISS_FLOW		22
#define RS_UNKN_SESS 	23
#define RS_UNKN_STYLE 	24
#define RS_UNKN_FLOWSPEC 25
#define RS_UNKN_FILT 	26
#define RS_UNKN_STMPL 	27
#define RS_UNKN_STSPEC 	28
#define RS_UNKN_ADSPEC 	29
#define RS_UNKN_POLICY 	30
#define RS_UNKN_INTGR	31
#define RS_TC		 	32
#define RS_SYS		 	33
#define RS_ADMINC	 	34

// Explanation of the error codes mentioned above

//	RS_OK		Message interpreted succesfully.
//
//	RS_ADM_DELAY Admission control failure. This is returned when the
//				 reservation is rejected by admission control because the
// delay cannot be met.
// RS_ADM_BW Admission control failure.Returned when Requested bw not available
// RS_ADM_SERC Admission control failure.Returned when Service conflicts
// RS_ADM_SERU Admission control failure.Returned when Service is unsupported
// RS_ADM_UNR	Admission control failure.Returned when there is an unreasonable request
//
//	RS_POLICY_CRED	Administrative Rejection, returned when the error is rejected
// for policy or administrative reason and the Required credentials
// are not present
// RS_POLICY_LAR	Administrative Rejection, returned when Request is too large for
// policy reasons
// RS_POLICY_QUOTA Administrative Rejection, returned when there is Insufficient quota
// or balance (accouting)
// RS_POLICY_PREMPT Administrative Rejection, returned when there is Administrative preemption
//
//
//	RS_PATH		No Path Information for this RESV, returned after a
//				reservation is requested and RSVP waits for a certain timeout
//				to receive PATH information.
//
//	RS_SENDER	No sender information for this RESV. returned when the there
//				is path state but it does not include the sender specfied in
//				one of the Filterspecs.
//
//	RS_AMB 		Ambigous Path, Sender port appears to be both zero and non zero
//				in the same session.
//			
//	RS_FILT		Ambigous FilterSpec, Filterspec matches more than one sender
//				in a style that requires a unique match.
//
//	RS_STYLE 	Conflicting or Unknown Style,Reservation style conflicts with
//				the style of an exixting reservation or it is an unknown style.
//
//	RS_DSTP		Conflicting dest. port. Sessions for the same destination
//				address and protocol have appeared with both zero and
//				non zero dest. port fields.
//
//	RS_SRCP 	Conflicting source port, the source port is non zero in a
//				filterspec or a sender template for a destination with port
//				zero.
//
//	RS_MISS_SESS Missing a required object, RSVP was unable to construct a message
//				since a required object,SESSION was missing.
// RS_MISS_STSPEC Missing a required object, RSVP was unable to construct a message
// since a required object,sender TSPEC was missing
// RS_MISS_STMPL For a multihomed host, the hostaddr field was missing.
// RS_MISS_STYLE The reserve message did not contain a style
// RS_MISS_FLOW The reserve message did not contain a FLOWSPEC object
//	RS_UNKN_SESS Unknown object, RSVP cannot recognise a field sent in the message
// or there is an error in one of the fields.Unknown SESSION
// RS_UNKN_STYLE Unknown object,STYLE
// RS_UNKN_FLOW Unknown object,FLOWSPEC
// RS_UNKN_FILT Unknown object,FILTERSPEC
// RS_UNKN_STMPL Unknown object,SENDER_TEMPLATE
// RS_UNKN_STSPEC Unknown object,SENDER_TSPEC
// RS_UNKN_ADSPEC Unknown object,SENDER_ADSPEC
// RS_UNKN_POLICY Unknown object,POLICY
// RS_UNKN_INTGR Unknown object,INTEGRITY
//		
//				
//
//	RS_TC		Error reported by traffic control module.
//
//	RS_SYS		An RSVP system error,any implementation specific error of
//				required.
//
// RS_ADMINC	Reservation made is greater than requested due to merging.

� A single RSVP socket may be shared among multiple sessions.

� PAGE �vi�

	� PAGE �v�

Introduction

� PAGE �v�

� PAGE �vii�

� PAGE �2�	Introduction

Introduction	� PAGE �1�

� PAGE �10�	TCP/IP

TCP/IP	� PAGE �9�

� PAGE �14�	IPX/SPX

IPX/SPX	� PAGE �15�

� PAGE �32�	DECNET

DECNET	� PAGE �29�

� PAGE �38�	OSI

OSI	� PAGE �35�

� PAGE �48�	ATM

ATM	� PAGE �49�

� PAGE �60�	SSL

SSL	� PAGE �61�

� PAGE �62�	Wireless

Wireless	� PAGE �67�

� PAGE �66�	WinSock / TAPI Integration

WinSock / TAPI Integration	� PAGE �63�

� PAGE �66�	RSVP

RSVP	� PAGE �65�

� DATE \l �5/9/96�		� PAGE �75�

� PAGE �68�	RSVP

RSVP	� PAGE �75�

